A Tightly Secure Identity-based Signature Scheme from Isogenies

Jiawei Chen¹ Hyungrok Jo¹ Shingo Sato¹ Junji Shikata¹

¹Yokohama National University, Japan

PQCrypto2023 Session I

Identity-based Signature (IBS)

 IBS aims to simplify the public-key infrastructure (PKI) requirement when mapping the public key to user's identities.

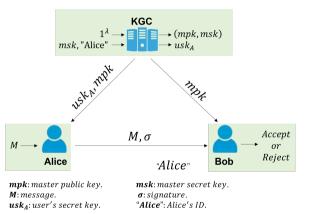


Figure 1: The framework of IBS

2/17

Isogeny-based cryptography

- One of post-quantum cryptography
- Hard problem: Given two supersingular elliptic curves over finite fields E, E', compute isogeny φ : E → E'.
- Two main isogeny-based key exchange protocols:
 - Supersingular Isogeny Diffie Hellman(SIDH) ×

Isogeny-based cryptography

- One of post-quantum cryptography
- Hard problem: Given two supersingular elliptic curves over finite fields E, E', compute isogeny φ : E → E'.
- Two main isogeny-based key exchange protocols:
 - Supersingular Isogeny Diffie Hellman(SIDH) ×
 - Commutative Supersingular Isogeny Diffie Hellman(CSIDH)

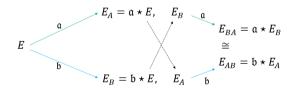


Figure 2: CSIDH key exchange protocol

IBS from isogenies

Digital Signature	IBS	
SeaSign	Peng et al. ¹	
CSI-FiSh	Shaw and Dutta(SD) ²	
Lossy CSI-FiSh ³	Our Scheme	

Table 1: Brief history of IBS from isogenies

- There exist some flaws in IBS of Peng et al.
- Security proof of SD uses rewind technology, hence reduction is not tight.

¹Cong Peng et al. "CsilBS: A post-quantum identity-based signature scheme based on isogenies". In: *Journal of Information Security and Applications* 54 (2020), p. 102504.

²Surbhi Shaw and Ratna Dutta. "Identification Scheme and Forward-Secure Signature in Identity-Based Setting from Isogenies". In: *ProvSec*. Vol. 13059. LNCS. Springer, 2021, pp. 309–326.

³Ali El Kaafarani, Shuichi Katsumata, and Federico Pintore. "Lossy CSI-FiSh: Efficient Signature Scheme with Tight Reduction to Decisional CSIDH-512". In: Public Key Cryptography (2). Vol. 12111. LNCS. Springer, 2020, pp. 157–186.

Chen, Jo, Sato, Shikata

A Tightly Secure Identity-based Signature Scheme from

Provable security reduction

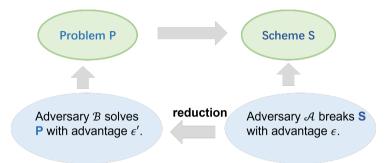


Figure 3: Security reduction

Security loss: $L = \frac{\epsilon}{\epsilon'}$ **Tight reduction**: L = O(1)

Motivation and Contribution Motivation

- The security reduction of SD is not tight.
- Digital signature of Pan and Wagner⁴+certificate transform ⇒ limited efficient tightly secure IBS⁵ (PW).

⁴ Jiaxin Pan and Benedikt Wagner. "Lattice-Based Signatures with Tight Adaptive Corruptions and More". In: *Public Key Cryptography (2)*. Vol. 13178. LNCS. Springer, 2022, pp. 347–378.

⁵Youngkyung Lee et al. "Tight security for the generic construction of identity-based signature (in the multi-instance setting)". In: Theoretical Computer Science 847 (2020), pp. 122–133.

Motivation and Contribution Motivation

- The security reduction of SD is not tight.
- Digital signature of Pan and Wagner⁴+certificate transform ⇒ limited efficient tightly secure IBS⁵ (PW).

Contribution

- We present an IBS scheme from the lossy CSI-FiSh and prove its tight security reduction.
- Smaller USK-size and Signature-size than PW when one of the parameters S_1 is chosen properly (e.g. $\leq 2^8 1$).

Chen, Jo, Sato, Shikata

⁴ Jiaxin Pan and Benedikt Wagner. "Lattice-Based Signatures with Tight Adaptive Corruptions and More". In: *Public Key Cryptography* (2). Vol. 13178. LNCS. Springer, 2022, pp. 347–378.

 $^{^{5}}$ Youngkyung Lee et al. "Tight security for the generic construction of identity-based signature (in the multi-instance setting)". In: Theoretical Computer Science 847 (2020), pp. 122–133.

An IBS scheme consists of four polynomial-time algorithms (*Setup*, *Ext*, *Sgn*, *Vrf*) where

- $Setup(1^{\lambda}) \rightarrow (mpk, msk)$
- $Ext(mpk, msk, id) \rightarrow usk_{id}$
- $Sgn(mpk, usk_{id}, m, id) \rightarrow \sigma$
- $Vrf(mpk, id, m, \sigma) \rightarrow Accept/Reject$

An IBS scheme consists of four polynomial-time algorithms (*Setup*, *Ext*, *Sgn*, *Vrf*) where

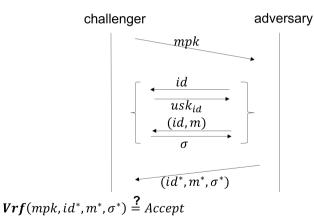
- $Setup(1^{\lambda}) \rightarrow (mpk, msk)$
- $Ext(mpk, msk, id) \rightarrow usk_{id}$
- $Sgn(mpk, usk_{id}, m, id) \rightarrow \sigma$
- $Vrf(mpk, id, m, \sigma) \rightarrow Accept/Reject$

Requirement of correctness

 $Vrf(mpk, id, m, Sgn(mpk, usk_{id}, m, id)) = Accept$

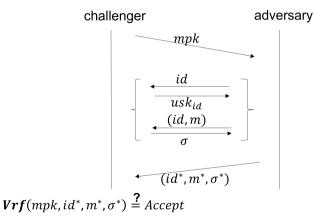
Security Definition

EUF-CMA: security game



Security Definition

EUF-CMA: security game



EUF-CMA-MK:

• The adversary cannot query *id* if (*id*, *m*) has been queried.

8/17

CSIDH setting

A group G acts freely and transitively on a set \mathcal{X}

$$\star: G \times \mathcal{X} \to \mathcal{X}$$

- (Identity) $e \star x = x$.
- (Compatibility) $g_1 \star (g_2 \star x) = (g_1g_2) \star x.$
- $g \mapsto g \star \mathcal{X}$ is bijective.

CSIDH setting

A group G acts freely and transitively on a set \mathcal{X}

$$\star: G \times \mathcal{X} \to \mathcal{X}$$

- (Identity) $e \star x = x$.
- (Compatibility) $g_1 \star (g_2 \star x) = (g_1g_2) \star x.$
- $g \mapsto g \star \mathcal{X}$ is bijective.

- G =the ideal class group $CI(\mathcal{O})$ of a quadratic order $\mathcal{O} \subset \mathbb{Q}(\sqrt{-p})$
- X = the set of supersingular elliptic curves E/𝔽_p such that End_p(E) ≅ O

(Lossy) CSI-FiSh assumption: $CI(\mathcal{O}) = \langle \mathfrak{g} \rangle$ (only holds at CSIDH-512.)

Lossy CSI-FiSh identification

$$pp = \{p, g, N = \#CI(\mathcal{O}), E_0 \in \mathcal{X}\}$$

$$\mathcal{R} := \{((E_1^{(0)}, E_2^{(0)}, E_1^{(1)}, E_2^{(1)}), a) | E_i^{(1)} = g^a \star E_i^{(0)}, i = 1, 2\}$$

4 E

10/17

Image: A match a ma

Lossy CSI-FiSh identification

$$pp = \{p, g, N = \#CI(\mathcal{O}), E_0 \in \mathcal{X}\}$$

$$\mathcal{R} := \{((E_1^{(0)}, E_2^{(0)}, E_1^{(1)}, E_2^{(1)}), a) | E_i^{(1)} = g^a \star E_i^{(0)}, i = 1, 2\}$$

 $\begin{array}{ccc} Prover & Verifier\\ (sk = a) & (pk = \{(E_1^{(0)}, E_2^{(0)}, E_1^{(1)}, E_2^{(1)}))\\ r \xleftarrow{\$} \mathbb{Z}_N, F_i = \mathfrak{g}^r \star E_i^{(0)} & \xrightarrow{F_1, F_2} & \\ \xleftarrow{ch} & ch \xleftarrow{\$} \{0, 1\} \\ (ch = 0), resp = r, (ch = 1), resp = r - a & \xrightarrow{resp} & (ch = 0), F_i = \mathfrak{g}^r \star E_i^{(0)} \\ & (ch = 1), F_i = \mathfrak{g}^{r-a} \star E_i^{(1)} \end{array}$

Figure 4: Base lossy CSI-FiSh identification

Enlarge the challenge space

- Repeat T times.
 - Choose $r_1, \dots, r_T \stackrel{\$}{\leftarrow} \mathbb{Z}_N$ and compute $\{F_{i,j} = \mathfrak{g}^{r_j} \star E_i^{(0)}\}_{i=1,2;j=1,\dots,T}$

Signing time becomes T times larger

Enlarge the challenge space

- Repeat *T* times.
 - Choose $r_1, \dots, r_T \stackrel{\$}{\leftarrow} \mathbb{Z}_N$ and compute $\{F_{i,j} = \mathfrak{g}^{r_j} \star E_i^{(0)}\}_{i=1,2;j=1,\dots,T}$
 - Signing time becomes T times larger
- Use S public keys.

Prover

$$(sk = \{a_{j}|j = 1, \dots, S\})$$

$$r \stackrel{\$}{\leftarrow} \mathbb{Z}_{N}, F_{i} = \mathfrak{g}^{r} \star E_{i}^{(0)}$$

$$(ch = 0), resp = r, (ch = j), resp = r - a_{j}$$

$$(ch = 0), resp = r, (ch = j), resp = r - a_{j}$$

$$(ch = 0), resp = r, (ch = j), resp = r - a_{j}$$

$$(ch = 0), F_{i} = \mathfrak{g}^{r} \star E_{i}^{(0)}$$

$$(ch = j), F_{i} = \mathfrak{g}^{r-a_{j}} \star E_{i}^{(j)}$$

▶ < ∃ ▶</p>

Enlarge the challenge space

- Repeat T times.
 - Choose $r_1, \dots, r_T \xleftarrow{\$} \mathbb{Z}_N$ and compute $\{F_{i,j} = \mathfrak{g}^{r_j} \star E_i^{(0)}\}_{i=1,2;j=1,\dots,T}$
 - Signing time becomes T times larger
- Use S public keys.

Prover

$$(sk = \{a_j | j = 1, \dots, S\})$$

$$r \stackrel{\$}{\leftarrow} \mathbb{Z}_N, F_i = \mathfrak{g}^r \star E_i^{(0)}$$

$$(ch = 0), resp = r, (ch = j), resp = r - a_j$$

$$(ch = 1), resp = r, (ch = j), resp = r - a_j$$

$$(ch = 1), resp = r, (ch = j), resp = r - a_j$$

$$(ch = 1), resp = r, (ch = j), resp = r - a_j$$

$$(ch = 1), F_i = \mathfrak{g}^r \star E_i^{(0)}$$

$$(ch = j), F_i = \mathfrak{g}^r \star E_i^{(j)}$$

• To achieve λ security level, $T \cdot log(S+1) \geq \lambda$.

 $H, H' : \{0, 1\}^* \to \{0, 1\}$: random oracles

Algorithm $Ext(mpk, msk, id) \rightarrow usk$

1:
$$r \leftarrow \mathbb{Z}_N, F_i = \mathfrak{g}^r \star E_i^{(0)}, i = 1, 2$$

2: $ch \leftarrow H(F_1, F_2, id)$
3: $(ch = 0), resp = r; (ch = 1), resp = r - a$
4: return $usk = (F_1, F_2, resp)$

 $H, H' : \{0,1\}^* \rightarrow \{0,1\}$: random oracles

Algorithm Setup(1^{λ}) \rightarrow mpk, msk 1: $pp = \{p, g, N = \#Cl(\mathcal{O}), E_0 \in \mathcal{X}, H, H'\}$ 2: $a, b, c \stackrel{\$}{\leftarrow} \mathbb{Z}_N$ 3: compute $E_1^{(0)} = \mathfrak{g}^b \star E_0, E_2^{(0)} = \mathfrak{g}^c \star E_0$ 4: compute $E_i^{(1)} = \mathfrak{g}^a \star E_i^{(0)}, i = 1, 2$ 5: return mpk = $(pp, E_1^{(0)}, E_2^{(0)}, E_1^{(1)}, E_2^{(1)}), msk = a, b, c$

Algorithm $Ext(mpk, msk, id) \rightarrow usk$

1:
$$r \leftarrow \mathbb{Z}_N, F_i = \mathfrak{g}^r \star E_i^{(0)}, i = 1, 2$$

2: $ch \leftarrow H(F_1, F_2, id)$
3: $(ch = 0), resp = r; (ch = 1), resp = r - a$
4: return $usk = (F_1, F_2, resp)$

 $H, H': \{0,1\}^* \rightarrow \{0,1\}$: random oracles

 $\begin{array}{l} \textbf{Algorithm} \quad Sgn(mpk, usk, m, id) \rightarrow \sigma \\ \hline 1: \text{ parse } usk \text{ as } (F_1, F_2, resp) \\ 2: \text{ compute } ch = H(F_1, F_2, id) \\ 3: r' \overset{\$}{\leftarrow} \mathbb{Z}_N, F'_i = \mathfrak{g}r' \star E^{(ch)}_i, i = 0, 1 \\ 4: ch' \leftarrow H'(F'_1, F'_2, m, id) \\ 5: (ch' = 0), resp' = r'; (ch' = 1), resp' = r' - resp \\ 6: \textbf{return } \sigma = (F_1, F_2, ch', resp') \end{array}$

Algorithm $Ext(mpk, msk, id) \rightarrow usk$

1:
$$r \leftarrow \mathbb{Z}_N, F_i = \mathfrak{g}^r \star E_i^{(0)}, i = 1, 2$$

2: $ch \leftarrow H(F_1, F_2, id)$
3: $(ch = 0), resp = r; (ch = 1), resp = r - a$
4: return $usk = (F_1, F_2, resp)$

 $H, H': \{0,1\}^* \rightarrow \{0,1\}$: random oracles

Algorithm Setup $(1^{\lambda}) \rightarrow mpk, msk$ 1: $pp = \{p, g, N = \#Cl(\mathcal{O}), E_0 \in \mathcal{X}, H, H'\}$ 2: $a, b, c \stackrel{\$}{\leftarrow} \mathbb{Z}_N$ 3: compute $E_1^{(0)} = \mathfrak{g}^b \star E_0, E_2^{(0)} = \mathfrak{g}^c \star E_0$ 4: compute $E_i^{(1)} = \mathfrak{g}^a \star E_i^{(0)}, i = 1, 2$ 5: return $mpk = (pp, E_1^{(0)}, E_2^{(0)}, E_1^{(1)}, E_2^{(1)}), msk = a, b, c$ Algorithm $Sgn(mpk, usk, m, id) \rightarrow \sigma$ 1: parse usk as $(F_1, F_2, resp)$ 2: compute $ch = H(F_1, F_2, id)$ 3: $r' \stackrel{\$}{\leftarrow} \mathbb{Z}_N, F'_i = \mathfrak{g}r' \star E^{(ch)}_i, i = 0, 1$ 4: $ch' \leftarrow H'(F'_1, F'_2, m, id)$ 5: (ch' = 0), resp' = r'; (ch' = 1), resp' = r' - resp6: return $\sigma = (F_1, F_2, ch', resp')$

Algorithm $Ext(mpk, msk, id) \rightarrow usk$

1:
$$r \leftarrow \mathbb{Z}_N, F_i = \mathfrak{g}^r \star E_i^{(0)}, i = 1, 2$$

2: $ch \leftarrow H(F_1, F_2, id)$
3: $(ch = 0), resp = r; (ch = 1), resp = r - a$
4: return $usk = (F_1, F_2, resp)$

 $H, H' : \{0,1\}^* \rightarrow \{0,1\}$: random oracles

Algorithm $Ext(mpk, msk, id) \rightarrow usk$

1:
$$r \leftarrow \mathbb{Z}_N, F_i = g^r \star E_i^{(0)}, i = 1, 2$$

2: $ch \leftarrow H(F_1, F_2, id)$
3: $(ch = 0), resp = r; (ch = 1), resp = r - a$
4: return $usk = (F_1, F_2, resp)$

 $H, H': \{0,1\}^* \rightarrow \{0,1\}$: random oracles

Algorithm $Sgn(mpk, usk, m, id) \rightarrow \sigma$ 1: parse usk as $(F_1, F_2, resp)$ 2: compute $ch = H(F_1, F_2, id)$ 3: $r' \stackrel{\$}{\leftarrow} \mathbb{Z}_N, F'_i = \mathfrak{g}r' \star E^{(ch)}_i, i = 0, 1$ 4: $ch' \leftarrow H'(F'_1, F'_2, m, id)$ 5: (ch' = 0), resp' = r'; (ch' = 1), resp' = r' - resp6: return $\sigma = (F_1, F_2, ch', resp')$

Algorithm $Vrf(mpk, id, m, \sigma) \rightarrow Accept/Reject$

1: parse σ as $(F_1, F_2, ch', resp')$ 2: compute F'_1, F'_2 from ch', resp'3: compute $ch = H(F_1, F_2, id)$ 4: if $F'_i = \mathfrak{g}^{resp'} \star F_i^{(ch)}$, (ch' = 0), or $F'_i = \mathfrak{g}^{resp'} \star F_i$, (ch' = 1), return Accept; 5: otherwise return Reject.

3

・ロト ・ 西ト ・ ヨト ・ ヨト

Enlarge the hash space

Use S₀ mpk and repeat T₁ times to enlarge the hash space of H
Use T₂, S₁ to enlarge the hash space of H'.

13/17

Enlarge the hash space

- Use $S_0 \ mpk$ and repeat T_1 times to enlarge the hash space of H
- Use T_2, S_1 to enlarge the hash space of H'.
- To achieve λ security level

$$T_1 \cdot \log(S_0 + 1) \ge \lambda$$

$$T_1 T_2 \cdot \log(S_1 + 1) \ge \lambda$$

Comparison

	security bound	security model	
SD	$\sqrt{q \cdot \epsilon} + negl$		
PW	$2S_0\epsilon + negl$	EUF-CMA	
Our scheme	$S_0\epsilon + negl$	EUF-CMA-MK ⁶	

Figure 5: Comparison with SD and PW

- q: the maximum number of query to the random oracle.
- $\epsilon:$ the maximum probability of breaking the underlying computational problem.
- S_0 : parameter of the corresponding computational assumptions.

⁶The adversary can not query *id* if (id, m) has been queried.

Comparison

	PW		Our Scheme	
(T_1, T_2, S_0, S_1)	USK	Signature	USK	Signature
(16,3,255,7)	74.0KB	66.9KB	3.7KB	8.7KB
(16, 2, 255, 15)	74.0KB	66.9KB	8.0KB	16.4KB
(8,2,65535,255)	18.9MB	16.8MB	69.9KB	131.1KB
(8,1,65535,65535)	18.9MB	16.8MB	18.0MB	33.6MB

Figure 6: Comparison with PW under the 128-bit security level

USK: user's secret key.

 T_1, T_2 : the numbers of parallel executions of the underlying (lossy) identification scheme.

 S_0, S_1 : parameters of the corresponding computational assumptions.

Conclusion and Future Work

Conclusion

- A tightly secure IBS scheme based on the lossy CSI-FiSh.
- When the parameter S_1 is chosen properly, the key-size and signature-size of our IBS are smaller than PW.

⁷Luca De Feo et al. "SCALLOP: Scaling the CSI-FiSh". In: Public Key Cryptography (1). Vol. 13940. LNCS. Springer, 2023, pp. 345–375.

⁸Luca De Feo et al. "SQISign: Compact Post-quantum Signatures from Quaternions and Isogenies". In: ASIACRYPT (1). Vol. 12491. LNCS. Springer, 2020, pp. 64–93.

Conclusion and Future Work

Conclusion

- A tightly secure IBS scheme based on the lossy CSI-FiSh.
- When the parameter S_1 is chosen properly, the key-size and signature-size of our IBS are smaller than PW.

Future Work

- SCALLOP⁷ \implies larger $Cl(\mathcal{O}) \implies$ expected quantum security.
- Construct IBS from other Isogney-based signature schemes, such as SQISign⁸.

⁷Luca De Feo et al. "SCALLOP: Scaling the CSI-FiSh". In: Public Key Cryptography (1). Vol. 13940. LNCS. Springer, 2023, pp. 345–375.

⁸Luca De Feo et al. "SQISign: Compact Post-quantum Signatures from Quaternions and Isogenies". In: ASIACRYPT (1). Vol. 12491. LNCS. Springer, 2020, pp. 64–93.

Thank You

chen-jiawei-hm@ynu.jp

Chen, Jo, Sato, Shikata

A Tightly Secure Identity-based Signature Scheme from

Image: A line of the second se

э