
SPDH-Sign
Towards Efficient, Post-quantum, Group-based Signatures

Christopher Battarbee 1 Delaram Kahrobaei 2

Ludovic Perret 3 Siamak F. Shahandashti1

1University of York

2City University of New York

3Sorbonne University

August 7, 2023

What is SPDH-Sign?

• Semidirect Product Diffie-Hellman Signatures

• A Couveignes-Rostostev-Stolbunov1 style signature scheme based on group
actions arising from group-based cryptography (CRS schemes)
• Addresses a problem with efficient sampling found in similar schemes

1Jean-Marc Couveignes. “Hard homogeneous spaces”. In: Cryptology ePrint Archive (2006),
Alexander Rostovtsev and Anton Stolbunov. “Public-key cryptosystem based on isogenies”. In:
Cryptology ePrint Archive (2006).

What is SPDH-Sign?

• Semidirect Product Diffie-Hellman Signatures
• A Couveignes-Rostostev-Stolbunov1 style signature scheme based on group

actions arising from group-based cryptography (CRS schemes)

• Addresses a problem with efficient sampling found in similar schemes

1Jean-Marc Couveignes. “Hard homogeneous spaces”. In: Cryptology ePrint Archive (2006),
Alexander Rostovtsev and Anton Stolbunov. “Public-key cryptosystem based on isogenies”. In:
Cryptology ePrint Archive (2006).

What is SPDH-Sign?

• Semidirect Product Diffie-Hellman Signatures
• A Couveignes-Rostostev-Stolbunov1 style signature scheme based on group

actions arising from group-based cryptography (CRS schemes)
• Addresses a problem with efficient sampling found in similar schemes

1Jean-Marc Couveignes. “Hard homogeneous spaces”. In: Cryptology ePrint Archive (2006),
Alexander Rostovtsev and Anton Stolbunov. “Public-key cryptosystem based on isogenies”. In:
Cryptology ePrint Archive (2006).

Group Actions

Definition
A group action (G,X ,⊛) consists of a finite abelian group G, a set X , and a
function ⊛ : G×X → X such that for all g,h ∈G,x ∈ X
• (g+h)⊛x = g⊛ (h⊛x)
• 0⊛x = x

We are interested in free, transitive group actions: only 0 fixes every element of x ,
every pair (x ,y) has a (unique) element g ∈G such that g⊛x = y .

Group Actions

Definition
A group action (G,X ,⊛) consists of a finite abelian group G, a set X , and a
function ⊛ : G×X → X such that for all g,h ∈G,x ∈ X
• (g+h)⊛x = g⊛ (h⊛x)
• 0⊛x = x

We are interested in free, transitive group actions: only 0 fixes every element of x ,
every pair (x ,y) has a (unique) element g ∈G such that g⊛x = y .

A Sigma Protocol
X0,X1 ∈ X , s⊛X0 = X1

P V

r $←G
I← r ⊛X0

I

c $←{0,1}
c

p← r −c ·s p

Transcripts (I,c,p) are passing if

p⊛Xc
?
= I

X0 X1

I

s⊛

r⊛
(r −s)⊛

A Sigma Protocol
X0,X1 ∈ X , s⊛X0 = X1

P V

r $←G
I← r ⊛X0

I

c $←{0,1}
c

p← r −c ·s p

Transcripts (I,c,p) are passing if

p⊛Xc
?
= I

X0 X1

I

s⊛

r⊛
(r −s)⊛

Fiat-Shamir Transform

• Uses hash functions into the challenge space to generate sigma protocol
transcripts non-interactively

• Gives ‘secure’ signature schemes provided hash functions are modelled as
random oracles
• As shown (roughly) in2 results of3 (QROM) go through given special

soundness and honest verifier zero knowledge.
• Provided large enough challenge space, security bounded by advantage

against recovering s from X0,X1; so-called group action discrete logarithm
problem admitting quantum subexponential algorithms

2Ward Beullens et al. “CSI-FiSh: efficient isogeny based signatures through class group
computations”. In: ASIACRYPT. 2019.

3Jelle Don et al. “Security of the Fiat-Shamir transformation in the quantum random-oracle
model”. In: CRYPTO2019.

Fiat-Shamir Transform

• Uses hash functions into the challenge space to generate sigma protocol
transcripts non-interactively
• Gives ‘secure’ signature schemes provided hash functions are modelled as

random oracles

• As shown (roughly) in2 results of3 (QROM) go through given special
soundness and honest verifier zero knowledge.
• Provided large enough challenge space, security bounded by advantage

against recovering s from X0,X1; so-called group action discrete logarithm
problem admitting quantum subexponential algorithms

2Ward Beullens et al. “CSI-FiSh: efficient isogeny based signatures through class group
computations”. In: ASIACRYPT. 2019.

3Jelle Don et al. “Security of the Fiat-Shamir transformation in the quantum random-oracle
model”. In: CRYPTO2019.

Fiat-Shamir Transform

• Uses hash functions into the challenge space to generate sigma protocol
transcripts non-interactively
• Gives ‘secure’ signature schemes provided hash functions are modelled as

random oracles
• As shown (roughly) in2 results of3 (QROM) go through given special

soundness and honest verifier zero knowledge.

• Provided large enough challenge space, security bounded by advantage
against recovering s from X0,X1; so-called group action discrete logarithm
problem admitting quantum subexponential algorithms

2Ward Beullens et al. “CSI-FiSh: efficient isogeny based signatures through class group
computations”. In: ASIACRYPT. 2019.

3Jelle Don et al. “Security of the Fiat-Shamir transformation in the quantum random-oracle
model”. In: CRYPTO2019.

Fiat-Shamir Transform

• Uses hash functions into the challenge space to generate sigma protocol
transcripts non-interactively
• Gives ‘secure’ signature schemes provided hash functions are modelled as

random oracles
• As shown (roughly) in2 results of3 (QROM) go through given special

soundness and honest verifier zero knowledge.
• Provided large enough challenge space, security bounded by advantage

against recovering s from X0,X1; so-called group action discrete logarithm
problem admitting quantum subexponential algorithms

2Ward Beullens et al. “CSI-FiSh: efficient isogeny based signatures through class group
computations”. In: ASIACRYPT. 2019.

3Jelle Don et al. “Security of the Fiat-Shamir transformation in the quantum random-oracle
model”. In: CRYPTO2019.

Honest Verifier Zero Knowledge

Definition
Our sigma protocol has HVZK if given c we can efficiently produce a transcript
(̄I,c, p̄) such that

• p̄⊛Xc
?
= p̄

• (̄I,c, p̄) has the same distribution as an honestly generated transcript

• Given c choose r $←G and output (r ⊛Xc ,c, r).
• Recall honest transcripts look like

(r ⊛X0,0, r) or (r ⊛X0,1, r −s)

• In other words we have HVZK provided we can sample uniformly at random

Honest Verifier Zero Knowledge

Definition
Our sigma protocol has HVZK if given c we can efficiently produce a transcript
(̄I,c, p̄) such that

• p̄⊛Xc
?
= p̄

• (̄I,c, p̄) has the same distribution as an honestly generated transcript

• Given c choose r $←G and output (r ⊛Xc ,c, r).

• Recall honest transcripts look like

(r ⊛X0,0, r) or (r ⊛X0,1, r −s)

• In other words we have HVZK provided we can sample uniformly at random

Honest Verifier Zero Knowledge

Definition
Our sigma protocol has HVZK if given c we can efficiently produce a transcript
(̄I,c, p̄) such that

• p̄⊛Xc
?
= p̄

• (̄I,c, p̄) has the same distribution as an honestly generated transcript

• Given c choose r $←G and output (r ⊛Xc ,c, r).
• Recall honest transcripts look like

(r ⊛X0,0, r) or (r ⊛X0,1, r −s)

• In other words we have HVZK provided we can sample uniformly at random

Sampling

• Ability to sample uniformly gives zero knowledge property

• Standard / original group action comes from isogenies; group hard to compute
• Workarounds include a one-time expensive calculation4 and ‘Fiat-Shamir with

aborts’5

4Ward Beullens et al. “CSI-FiSh: efficient isogeny based signatures through class group
computations”. In: ASIACRYPT. 2019.

5Luca De Feo and Steven D Galbraith. “SeaSign: compact isogeny signatures from class group
actions”. In: EUROCRYPT. 2019.

Sampling

• Ability to sample uniformly gives zero knowledge property
• Standard / original group action comes from isogenies; group hard to compute

• Workarounds include a one-time expensive calculation4 and ‘Fiat-Shamir with
aborts’5

4Ward Beullens et al. “CSI-FiSh: efficient isogeny based signatures through class group
computations”. In: ASIACRYPT. 2019.

5Luca De Feo and Steven D Galbraith. “SeaSign: compact isogeny signatures from class group
actions”. In: EUROCRYPT. 2019.

Sampling

• Ability to sample uniformly gives zero knowledge property
• Standard / original group action comes from isogenies; group hard to compute
• Workarounds include a one-time expensive calculation4 and ‘Fiat-Shamir with

aborts’5

4Ward Beullens et al. “CSI-FiSh: efficient isogeny based signatures through class group
computations”. In: ASIACRYPT. 2019.

5Luca De Feo and Steven D Galbraith. “SeaSign: compact isogeny signatures from class group
actions”. In: EUROCRYPT. 2019.

Recap

• Certain types of group actions give short post-quantum signatures

• Important to be able to compute the group of the group action or the security
proofs fall apart
• Mainstream example of cryptographic group actions are such that it is difficult

to compute the group
• Current solutions are slow to compute signatures or to generate parameters
• Would be nice to have a group action where we could compute the group

easily...

Recap

• Certain types of group actions give short post-quantum signatures
• Important to be able to compute the group of the group action or the security

proofs fall apart

• Mainstream example of cryptographic group actions are such that it is difficult
to compute the group
• Current solutions are slow to compute signatures or to generate parameters
• Would be nice to have a group action where we could compute the group

easily...

Recap

• Certain types of group actions give short post-quantum signatures
• Important to be able to compute the group of the group action or the security

proofs fall apart
• Mainstream example of cryptographic group actions are such that it is difficult

to compute the group

• Current solutions are slow to compute signatures or to generate parameters
• Would be nice to have a group action where we could compute the group

easily...

Recap

• Certain types of group actions give short post-quantum signatures
• Important to be able to compute the group of the group action or the security

proofs fall apart
• Mainstream example of cryptographic group actions are such that it is difficult

to compute the group
• Current solutions are slow to compute signatures or to generate parameters

• Would be nice to have a group action where we could compute the group
easily...

Recap

• Certain types of group actions give short post-quantum signatures
• Important to be able to compute the group of the group action or the security

proofs fall apart
• Mainstream example of cryptographic group actions are such that it is difficult

to compute the group
• Current solutions are slow to compute signatures or to generate parameters
• Would be nice to have a group action where we could compute the group

easily...

The Semidirect Product

Definition
Let G be a finite group and Aut(G) be its group of automorphisms. The semidirect
product of G by Aut(G) (written G⋊Aut(G)) is the group G×Aut(G) equipped
with multiplication

(g,φ)(h,ψ) = (ψ(g)h,ψφ)

Definition
Let G be a finite group. Each pair (g,φ) ∈G⋊Aut(G) defines a function
sg,φ : Z→G by

(g,φ)x = (sg,φ (x),φ x)

The Semidirect Product

Definition
Let G be a finite group and Aut(G) be its group of automorphisms. The semidirect
product of G by Aut(G) (written G⋊Aut(G)) is the group G×Aut(G) equipped
with multiplication

(g,φ)(h,ψ) = (ψ(g)h,ψφ)

Definition
Let G be a finite group. Each pair (g,φ) ∈G⋊Aut(G) defines a function
sg,φ : Z→G by

(g,φ)x = (sg,φ (x),φ x)

Acting by Integers

Notice6

(sg,φ (x +y),φ x+y) = (g,φ)x+y

= (g,φ)x(g,φ)y

= (sg,φ (x),φ x)(sg,φ (y),φ y)

= (φ y (sg,φ (x)
)

sg,φ (y),φ x+y)

There is a function ∗ : Z×G→G such that

y ∗sg,φ (x) = sg,φ (x +y)

6Maggie Habeeb et al. “Public key exchange using semidirect product of (semi) groups”. In:
ACNS. 2013.

Acting by Integers

Notice6

(sg,φ (x +y),φ x+y) = (g,φ)x+y

= (g,φ)x(g,φ)y

= (sg,φ (x),φ x)(sg,φ (y),φ y)

= (φ y (sg,φ (x)
)

sg,φ (y),φ x+y)

There is a function ∗ : Z×G→G such that

y ∗sg,φ (x) = sg,φ (x +y)

6Maggie Habeeb et al. “Public key exchange using semidirect product of (semi) groups”. In:
ACNS. 2013.

Acting by Integers

Notice6

(sg,φ (x +y),φ x+y) = (g,φ)x+y

= (g,φ)x(g,φ)y

= (sg,φ (x),φ x)(sg,φ (y),φ y)

= (φ y (sg,φ (x)
)

sg,φ (y),φ x+y)

There is a function ∗ : Z×G→G such that

y ∗sg,φ (x) = sg,φ (x +y)

6Maggie Habeeb et al. “Public key exchange using semidirect product of (semi) groups”. In:
ACNS. 2013.

Looping
• Some N ∈ N is such that (g,φ)N = (1, id), so sg,φ (N) = 1

• Let n be the smallest such integer; it follows that the set Cg,φ = {sg,φ (i) : i ∈ Z}
has size n

One has

(n+y)∗sg,φ (x) = y ∗sg,φ (x +n)
= y ∗φ

x(sg,φ (n))sg,φ (x)
= y ∗sg,φ (x)

Theorem
(Zn,Cg,φ ,⊛) is a free, transitive group action.
For efficient sampling: how do we compute n?

Looping
• Some N ∈ N is such that (g,φ)N = (1, id), so sg,φ (N) = 1
• Let n be the smallest such integer; it follows that the set Cg,φ = {sg,φ (i) : i ∈ Z}

has size n

One has

(n+y)∗sg,φ (x) = y ∗sg,φ (x +n)
= y ∗φ

x(sg,φ (n))sg,φ (x)
= y ∗sg,φ (x)

Theorem
(Zn,Cg,φ ,⊛) is a free, transitive group action.
For efficient sampling: how do we compute n?

Looping
• Some N ∈ N is such that (g,φ)N = (1, id), so sg,φ (N) = 1
• Let n be the smallest such integer; it follows that the set Cg,φ = {sg,φ (i) : i ∈ Z}

has size n
One has

(n+y)∗sg,φ (x) = y ∗sg,φ (x +n)
= y ∗φ

x(sg,φ (n))sg,φ (x)
= y ∗sg,φ (x)

Theorem
(Zn,Cg,φ ,⊛) is a free, transitive group action.
For efficient sampling: how do we compute n?

Looping
• Some N ∈ N is such that (g,φ)N = (1, id), so sg,φ (N) = 1
• Let n be the smallest such integer; it follows that the set Cg,φ = {sg,φ (i) : i ∈ Z}

has size n
One has

(n+y)∗sg,φ (x) = y ∗sg,φ (x +n)
= y ∗φ

x(sg,φ (n))sg,φ (x)
= y ∗sg,φ (x)

Theorem
(Zn,Cg,φ ,⊛) is a free, transitive group action.

For efficient sampling: how do we compute n?

Looping
• Some N ∈ N is such that (g,φ)N = (1, id), so sg,φ (N) = 1
• Let n be the smallest such integer; it follows that the set Cg,φ = {sg,φ (i) : i ∈ Z}

has size n
One has

(n+y)∗sg,φ (x) = y ∗sg,φ (x +n)
= y ∗φ

x(sg,φ (n))sg,φ (x)
= y ∗sg,φ (x)

Theorem
(Zn,Cg,φ ,⊛) is a free, transitive group action.
For efficient sampling: how do we compute n?

Main Theorem
Theorem
sg,φ (x) = φ x−1(g)...φ(g)g

Proof.
Induction - notice sg,φ (x +1) = 1∗sg,φ (x) = φ(sg,φ (x))g

Theorem
Let N be the order of (g,φ) as a G⋊Aut(G) element, and n be the smallest
integer such that sg,φ (n) = 1. Then n|N.

Proof.
Certainly N = kn+ l for k , l ∈ N, and sg,φ (N) = 1. We know

1 = φ
kn+l−1(g)...φ(g)g

Main Theorem
Theorem
sg,φ (x) = φ x−1(g)...φ(g)g

Proof.
Induction - notice sg,φ (x +1) = 1∗sg,φ (x) = φ(sg,φ (x))g

Theorem
Let N be the order of (g,φ) as a G⋊Aut(G) element, and n be the smallest
integer such that sg,φ (n) = 1. Then n|N.

Proof.
Certainly N = kn+ l for k , l ∈ N, and sg,φ (N) = 1. We know

1 = φ
kn+l−1(g)...φ(g)g

Main Theorem
Theorem
sg,φ (x) = φ x−1(g)...φ(g)g

Proof.
Induction - notice sg,φ (x +1) = 1∗sg,φ (x) = φ(sg,φ (x))g

Theorem
Let N be the order of (g,φ) as a G⋊Aut(G) element, and n be the smallest
integer such that sg,φ (n) = 1. Then n|N.

Proof.
Certainly N = kn+ l for k , l ∈ N, and sg,φ (N) = 1. We know

1 = φ
kn+l−1(g)...φ(g)g

Main Theorem
Proof.
We can write the set {0, ...,kn+ l−1} as

0+{0, ...,n−1}
n+{0, ...,n−1}
· · ·

(k −1)n+{0, ...,n−1}
kn+{0, ..., l−1}

In other words

φ
kn
(

φ
l−1(g)...g

) k−1

∏
i=0

φ
(k−(i+1))n

(
φ

n−1(g)...g
)
= 1

We therefore have sg,φ (l) = 1 with l < n, so l = 0.

Main Theorem
Proof.
We can write the set {0, ...,kn+ l−1} as

0+{0, ...,n−1}
n+{0, ...,n−1}
· · ·

(k −1)n+{0, ...,n−1}
kn+{0, ..., l−1}

In other words

φ
kn
(

φ
l−1(g)...g

) k−1

∏
i=0

φ
(k−(i+1))n

(
φ

n−1(g)...g
)
= 1

We therefore have sg,φ (l) = 1 with l < n, so l = 0.

Main Theorem
Proof.
We can write the set {0, ...,kn+ l−1} as

0+{0, ...,n−1}
n+{0, ...,n−1}
· · ·

(k −1)n+{0, ...,n−1}
kn+{0, ..., l−1}

In other words

φ
kn
(

φ
l−1(g)...g

) k−1

∏
i=0

φ
(k−(i+1))n

(
φ

n−1(g)...g
)
= 1

We therefore have sg,φ (l) = 1 with l < n, so l = 0.

Example

Let p be an odd prime, and define

Gp =

{(
a b
0 1

)
: a,b ∈ Zp2 ,a≡ 1 mod p

}

• Gp has order p3, turns out |Aut(Gp)|= p3(p−1)
• Follows that for any (g,φ) ∈Gp ⋊Aut(Gp), associated n|p6(p−1)
• 5 such values with additional restriction n ≤ p3

• Each such check requires O(logp) semidirect product group operations

Example

Let p be an odd prime, and define

Gp =

{(
a b
0 1

)
: a,b ∈ Zp2 ,a≡ 1 mod p

}

• Gp has order p3, turns out |Aut(Gp)|= p3(p−1)

• Follows that for any (g,φ) ∈Gp ⋊Aut(Gp), associated n|p6(p−1)
• 5 such values with additional restriction n ≤ p3

• Each such check requires O(logp) semidirect product group operations

Example

Let p be an odd prime, and define

Gp =

{(
a b
0 1

)
: a,b ∈ Zp2 ,a≡ 1 mod p

}

• Gp has order p3, turns out |Aut(Gp)|= p3(p−1)
• Follows that for any (g,φ) ∈Gp ⋊Aut(Gp), associated n|p6(p−1)

• 5 such values with additional restriction n ≤ p3

• Each such check requires O(logp) semidirect product group operations

Example

Let p be an odd prime, and define

Gp =

{(
a b
0 1

)
: a,b ∈ Zp2 ,a≡ 1 mod p

}

• Gp has order p3, turns out |Aut(Gp)|= p3(p−1)
• Follows that for any (g,φ) ∈Gp ⋊Aut(Gp), associated n|p6(p−1)
• 5 such values with additional restriction n ≤ p3

• Each such check requires O(logp) semidirect product group operations

Example

Let p be an odd prime, and define

Gp =

{(
a b
0 1

)
: a,b ∈ Zp2 ,a≡ 1 mod p

}

• Gp has order p3, turns out |Aut(Gp)|= p3(p−1)
• Follows that for any (g,φ) ∈Gp ⋊Aut(Gp), associated n|p6(p−1)
• 5 such values with additional restriction n ≤ p3

• Each such check requires O(logp) semidirect product group operations

Parameter Estimation

• Complexity of quantum attacks as a function of size of group in group action

• Naive signature implementation impractical (several megabytes) - turns out
we can boost challenge space (say to size S) at expense of public keys
• Borrowing estimates from isogeny group action7 suggesting group size

logn = 512
• Tradeoffs available - at the short signature / long public key end signatures

look like 8 pairs of (proof,challenge) with challenge space size 216

• Signatures of 538B at NIST 1 parameters

7Wouter Castryck et al. “CSIDH: an efficient post-quantum commutative group action”. In:
ASIACRYPT. 2018, Xavier Bonnetain and André Schrottenloher. “Quantum security analysis of
CSIDH”. In: EUROCRYPT. 2020.

Parameter Estimation

• Complexity of quantum attacks as a function of size of group in group action
• Naive signature implementation impractical (several megabytes) - turns out

we can boost challenge space (say to size S) at expense of public keys

• Borrowing estimates from isogeny group action7 suggesting group size
logn = 512
• Tradeoffs available - at the short signature / long public key end signatures

look like 8 pairs of (proof,challenge) with challenge space size 216

• Signatures of 538B at NIST 1 parameters

7Wouter Castryck et al. “CSIDH: an efficient post-quantum commutative group action”. In:
ASIACRYPT. 2018, Xavier Bonnetain and André Schrottenloher. “Quantum security analysis of
CSIDH”. In: EUROCRYPT. 2020.

Parameter Estimation

• Complexity of quantum attacks as a function of size of group in group action
• Naive signature implementation impractical (several megabytes) - turns out

we can boost challenge space (say to size S) at expense of public keys
• Borrowing estimates from isogeny group action7 suggesting group size

logn = 512

• Tradeoffs available - at the short signature / long public key end signatures
look like 8 pairs of (proof,challenge) with challenge space size 216

• Signatures of 538B at NIST 1 parameters

7Wouter Castryck et al. “CSIDH: an efficient post-quantum commutative group action”. In:
ASIACRYPT. 2018, Xavier Bonnetain and André Schrottenloher. “Quantum security analysis of
CSIDH”. In: EUROCRYPT. 2020.

Parameter Estimation

• Complexity of quantum attacks as a function of size of group in group action
• Naive signature implementation impractical (several megabytes) - turns out

we can boost challenge space (say to size S) at expense of public keys
• Borrowing estimates from isogeny group action7 suggesting group size

logn = 512
• Tradeoffs available - at the short signature / long public key end signatures

look like 8 pairs of (proof,challenge) with challenge space size 216

• Signatures of 538B at NIST 1 parameters

7Wouter Castryck et al. “CSIDH: an efficient post-quantum commutative group action”. In:
ASIACRYPT. 2018, Xavier Bonnetain and André Schrottenloher. “Quantum security analysis of
CSIDH”. In: EUROCRYPT. 2020.

Conclusions and Further Work

• Promising short signatures providing efficient sampling

• Checking of constants in asymptotic security estimates, implementation,
optimisations, survey of appropriate groups etc required before concrete
parameters can be given
• Shows the value of communication between fields! We learned from

isogenists and used our results to augment the field
∼ The End∼

Conclusions and Further Work

• Promising short signatures providing efficient sampling
• Checking of constants in asymptotic security estimates, implementation,

optimisations, survey of appropriate groups etc required before concrete
parameters can be given

• Shows the value of communication between fields! We learned from
isogenists and used our results to augment the field

∼ The End∼

Conclusions and Further Work

• Promising short signatures providing efficient sampling
• Checking of constants in asymptotic security estimates, implementation,

optimisations, survey of appropriate groups etc required before concrete
parameters can be given
• Shows the value of communication between fields! We learned from

isogenists and used our results to augment the field

∼ The End∼

Conclusions and Further Work

• Promising short signatures providing efficient sampling
• Checking of constants in asymptotic security estimates, implementation,

optimisations, survey of appropriate groups etc required before concrete
parameters can be given
• Shows the value of communication between fields! We learned from

isogenists and used our results to augment the field
∼ The End∼

