Wave Parameter Selection

Nicolas Sendrier, Inria

PQCrypto 2023 August 16 2023, College Park, MD, USA

Wave

Wave is an hash-and-sign digital signature scheme based on codes.

Wave leverages the decoding of ternary generalized (U|U + V) codes, which is easier than the decoding of random codes of same size.

Wave is secure under the following assumptions:

- Hardness of decoding (for large weight),
- Pseudorandomness of permuted generalized ternary (U|U+V) codes.

This talk: relate the security assumptions to hard decoding problems and their solvers, and describe how to select secure parameters

Decoding Problem

Decoding Problem – DP(q; n, k, t)

A finite field \mathbf{F}_q and three integers n, k, t such that n > k > 0 and $0 \le t \le n$. **Instance:** $(\mathbf{H}, \mathbf{s}) \in \mathbf{F}_q^{(n-k) \times n} \times \mathbf{F}_q^{n-k}$ **Solution:** $\mathbf{e} \in \mathbf{F}_q^n$ such that $|\mathbf{e}| = t$ and $\mathbf{e}\mathbf{H}^{\mathsf{T}} = \mathbf{s}$.

Hard if
$$\begin{cases} t < \frac{q-1}{q}(n-k) & \text{``small weight''} \\ t > \frac{q-1}{q}(n-k) + k & \text{``large weight''} \end{cases}$$

Easy if $0 \le t - \frac{q-1}{q}(n-k) \le k$.

t: Hard Easy Hard

$$d = \frac{q-1}{q}(n-k)$$
 $k + \frac{q-1}{q}(n-k)$

DOOM Problem – $DP_N(q; n, k, t)$ *Decoding One Out of Many* A finite field \mathbf{F}_q and three integers n, k, t such that n > k > 0 and $0 \le t \le n$. **Instance:** $(\mathbf{H}, \mathbf{s}_1, \dots, \mathbf{s}_N) \in \mathbf{F}_q^{(n-k) \times n} \times (\mathbf{F}_q^{n-k})^N$ **Solution:** $\mathbf{e} \in \mathbf{F}_q^n$ such that $|\mathbf{e}| = t$ and $\mathbf{eH}^{\mathsf{T}} \in {\mathbf{s}_1, \dots, \mathbf{s}_N}$.

 DP_N is not harder when N grows.

 DP_{∞} if the adversary is free to choose N.

 DP_∞ is hard $\Longleftrightarrow \mathsf{DP}$ is hard

Generalized Ternary (U|U+V) Codes

n an even integer, $k = k_U + k_V$ with 0 $< k_U < n/2$ and 0 $< k_V < n/2$

A generalized ternary (U|U + V) code admits a parity check matrix

$$\mathbf{H} = \begin{pmatrix} \mathbf{d} \star \mathbf{H}_U & -\mathbf{b} \star \mathbf{H}_U \\ \hline -\mathbf{c} \star \mathbf{H}_V & \mathbf{a} \star \mathbf{H}_V \end{pmatrix} \in \mathbf{F}_3^{(n-k) \times n}$$

where:

- $\mathbf{H}_U \in \mathbf{F}_3^{(n/2-k_U) \times n/2}$ and $\mathbf{H}_V \in \mathbf{F}_3^{(n/2-k_V) \times n/2}$, random $(U = \langle \mathbf{H}_U \rangle^{\perp}$ and $V = \langle \mathbf{H}_V \rangle^{\perp}$ denote the codes admitting \mathbf{H}_U and \mathbf{H}_V respectively as parity check matrices)
- $\mathbf{a} = (a_i)_{0 \le i < n}, \mathbf{b} = (b_i)_{0 \le i < n}, \mathbf{c} = (c_i)_{0 \le i < n}, \mathbf{d} = (d_i)_{0 \le i < n}$ in \mathbf{F}_3^n , $\forall i, 0 \le i < n, a_i \ne 0, c_i \ne 0, a_i d_i - b_i c_i \ne 0$
- \bullet '*' denotes the component-wise product

Generalized Ternary (U|U+V) Codes (continued)

We denote C the generalized (U|U+V) code associated to $(U, V, \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$.

The code $\ensuremath{\mathcal{C}}$ admits the following generator matrix

$$\mathbf{G} = \begin{pmatrix} \mathbf{a} \star \mathbf{G}_U & \mathbf{c} \star \mathbf{G}_U \\ \hline \mathbf{b} \star \mathbf{G}_V & \mathbf{d} \star \mathbf{G}_V \end{pmatrix} \in \mathbf{F}_3^{k \times n}$$

where $\mathbf{G}_U \in \mathbf{F}_3^{k_U \times n/2}$ and $\mathbf{G}_V \in \mathbf{F}_3^{k_V \times n/2}$ are any generator matrices of Uand V respectively.

Finally note that the dual of C is also a generalized (U|U + V) code (associated to $(V^{\perp}, U^{\perp}, -c, d, a, -b)$)

Generalized Ternary (U|U+V) Codes – Trapdoor Decoder

There exists a probabilistic decoding procedure for $\ensuremath{\mathcal{C}}$

$$\begin{array}{rccc} \Phi_{\mathcal{C},w} &\colon \mathbf{F}_3^{n-k} &\longrightarrow \mathbf{F}_3^n \\ & \mathbf{s} &\longmapsto \mathbf{e} & \text{such that } \mathbf{e}\mathbf{H}^{\mathsf{T}} = \mathbf{s}, |\mathbf{e}| = w \end{array}$$

which takes benefit of the (U|U + V) structure and runs successfully in polynomial time for a range of values $w > k + \frac{2}{3}(n-k)$.

(recall that generic decoding is hard for such w)



Wave

Hash-and-Sign signature scheme:

- Public: a ternary [n,k] code C_{pub}
- Secret: a (trapdoor) decoder for w errors in C_{pub} (C_{pub} a permuted generalized ternary (U|U+V) code)
- Signature: the solution of a decoding problem for w errors in C_{pub} , the instance is obtained by hashing the message

Security:

- Solving $\mathsf{DP}_{\infty}(3; n, k, w)$ is hard enough
- Distinguishing \mathcal{C}_{pub} from random is hard enough

Wave is proven EUF-CMA using a GPV-like framework.

Requires the output distribution of the trapdoor function to be independent of the secret \rightarrow immunity to statistical attacks.

 \rightarrow an additional parameter g, the gap, used in the decoder, was introduced to ensure a uniformity condition for the proof.

(The gap is such that, essentially, any $m \times (m + g)$ ternary matrix has rank m with high enough probability,

e.g. in NIST's threat model $g = 40 \approx 64/\log_2 3$)

Selecting Parameters for Wave

- 1. Choose n, k (k = n/2 for NIST) and g
- 2. Choose k_U, w (and $k_V = k k_U$) such that

$$w = \frac{2}{3}(n+k_U-g) \quad \left(\text{and } w > \frac{2}{3}(n-k)+k\right)$$

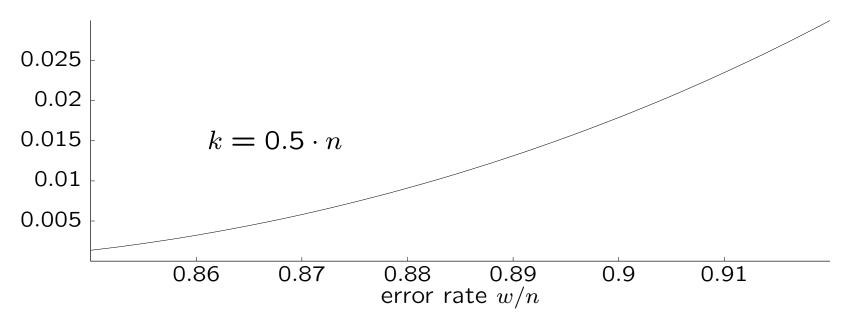
w large is best against forgery attacks k_U small is best against key attacks.

 \rightarrow there is a trade-off to optimize step 2.

- **Forgery Attacks:** Solve $DP_{\infty}(3; n, k, w)$ when w is large. Best known approach [Bricout, Chailloux, Debris-Alazard, Lequesne, 2019] is Information Set Decoding (ISD) + Wagner's Generalized Birthday Algorithm (GBA).
- **Key Attacks:** Distinguish C_{pub} from random.

Best known approach: find unusual codewords (type-U or type-V, definition coming next...)

Forgery Attack



Computational cost (asymptotic) for solving $DP_{\infty}(3; n, k, w)$ with ISD+GBA (classical)

WF =
$$2^{c \cdot n}$$

To reach $\lambda = 128$ bits of (classical) security: $w = 0.92 \cdot n \rightarrow c = 0.03 \rightarrow n \ge 4267$ $w = 0.87 \cdot n \rightarrow c = 0.0058 \rightarrow n \ge 22000$

Except for the two following subcodes:

type-U: $\mathcal{U}(\mathcal{C}) = \{(\mathbf{a} \star \mathbf{u}, \mathbf{c} \star \mathbf{u}) \mid \mathbf{u} \in U\}$

type-V: $\mathcal{V}(\mathcal{C}) = \{(\mathbf{b} \star \mathbf{v}, \mathbf{d} \star \mathbf{v}) \mid \mathbf{v} \in V\}$

the weight distribution of a (permuted) generalized (U|U + V) is as for a random code, [Debris-Alazard, PhD, 2019].

Weight Distribution of Generalized (U|U+V) Codes

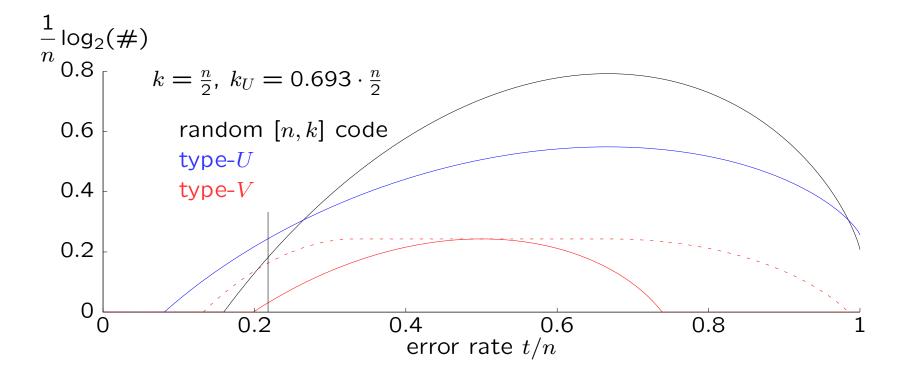
$$\mathcal{U}(\mathcal{C}, j) = \{ (\mathbf{a} \star \mathbf{u}, \mathbf{c} \star \mathbf{u}) \mid \mathbf{u} \in U, |\mathbf{u}| = j \}$$

has cardinality $\frac{\binom{n/2}{j}2^j}{3^{n/2-k_U}}$ and contains words of weight $t = 2j$

$$\begin{split} \mathcal{V}(\mathcal{C},j) &= \{ (\mathbf{b} \star \mathbf{v}, \mathbf{d} \star \mathbf{v}) \mid \mathbf{v} \in V, |\mathbf{v}| = j \} \\ \text{has cardinality } \frac{\binom{n/2}{j} 2^j}{3^{n/2-k_V}} \text{ and contains words of weight } t \in [j, 2j] \\ \text{(average weight is } \frac{4}{3} \cdot j) \end{split}$$

A random ternary [n,k] code contains $\frac{\binom{n}{t}2^t}{3^{n-k}}$ words of weight t

Weight Distribution of Generalized (U|U+V) Codes



Example: for $t = 0.209 \cdot n$ in the above figure:

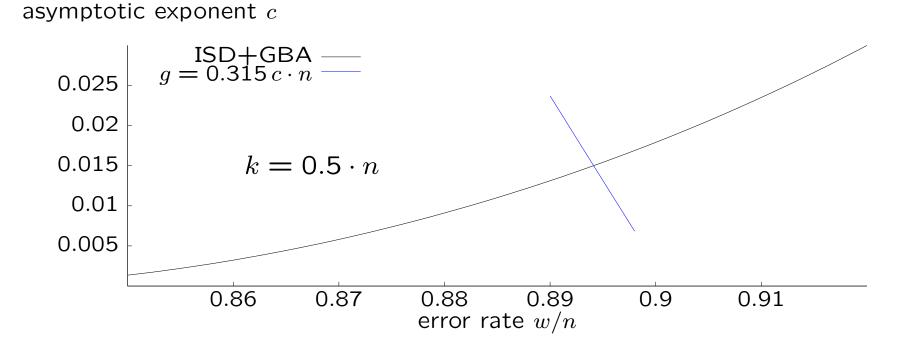
- the number of "random" codewords is $2^{0.156 \cdot n}$
- the number of type-U codewords is $2^{0.231 \cdot n}$
- the number of type-V codewords is $2^{0.0169 \cdot n}$

For Wave relevant parameters, there are always fewer type-V than type-U codewords.

For extremal weights type-U codewords may dominate, and the cost for finding words of that weight in C_{pub} (or C_{pub}^{\perp}) will be smaller than expected in a random code. This provides a distinguisher whose cost is obtained by minimizing over all weights.

To estimate this cost, codewords are searched with the variant of ISD due to [May, Meurer, Thomae, 2011].

Forgery and Key Attacks – Trade-off



For fixed n, k, g, the cost for finding type-U codewords depends on k_U . Using the relation $w = \frac{2}{3}(n+k_U-g)$, this cost can be viewed as a function of w plotted above in blue together with the forgery cost.

The intersection of the curves corresponds to the optimal parameters.

Wave Parameters

NIST parameters are for k = n/2

The security parameter λ corresponds to classical security bits

Quantum security is always $\geq \lambda/2$ bits

NIST							
Level I	128	8 5 7 6	4 288	7 668	2966	1 322	40
Level III	192	12 544	6 272	11 226	4 3 3 5	1 937	40
Level V	256	16 512	8 256	14 784	5704	2 5 5 2	40

	Signature len	Key size		
	avg. entropy	max length	(MBytes)	
Level I	772.5	822	3.68	
Level III	1129.8	1249	7.87	
Level V	1487.0	1644	13.63	

Conclusion

- Signature length scales linearly with security
- Key size scales quadratically with security
- The parameter selection process is easy to adapt if/when forgery or key attacks improve
- Code rate 1/2 features a good trade-off between signature length and key size (higher rates reduce the signature length) (lower rates reduce the key size)

