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Wave

Wave is an hash-and-sign digital signature scheme based on codes.

Wave leverages the decoding of ternary generalized (U |U + V ) codes,

which is easier than the decoding of random codes of same size.

Wave is secure under the following assumptions:

• Hardness of decoding (for large weight),

• Pseudorandomness of permuted generalized ternary (U |U+V ) codes.

This talk: relate the security assumptions to hard decoding problems

and their solvers, and describe how to select secure parameters
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Decoding Problem

Decoding Problem – DP(q;n, k, t)

A finite field Fq and three integers n, k, t such that n > k > 0 and 0 ≤ t ≤ n.

Instance: (H, s) ∈ F(n−k)×n
q × Fn−kq

Solution: e ∈ Fnq such that |e| = t and eHᵀ = s.

Hard if

 t < q−1
q (n− k) “small weight”

t > q−1
q (n− k) + k “large weight”

.

Easy if 0 ≤ t− q−1
q (n− k) ≤ k.

t :
Hard Easy Hard

0 nq−1
q (n− k) k + q−1

q (n− k)
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Decoding Problem – Multiple Instances

DOOM Problem – DPN(q;n, k, t) Decoding One Out of Many

A finite field Fq and three integers n, k, t such that n > k > 0 and 0 ≤ t ≤ n.

Instance: (H, s1, . . . , sN) ∈ F(n−k)×n
q ×

(
Fn−kq

)N
Solution: e ∈ Fnq such that |e| = t and eHᵀ ∈ {s1, . . . , sN}.

DPN is not harder when N grows.

DP∞ if the adversary is free to choose N .

DP∞ is hard ⇐⇒ DP is hard
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Generalized Ternary (U |U + V ) Codes

n an even integer, k = kU + kV with 0 < kU < n/2 and 0 < kV < n/2

A generalized ternary (U |U + V ) code admits a parity check matrix

H =

 d ?HU −b ?HU

−c ?HV a ?HV

 ∈ F(n−k)×n
3

where:

• HU ∈ F
(n/2−kU)×n/2
3 and HV ∈ F

(n/2−kV )×n/2
3 , random

(U = 〈HU〉⊥ and V = 〈HV 〉⊥ denote the codes admitting HU and HV

respectively as parity check matrices)

• a = (ai)0≤i<n,b = (bi)0≤i<n, c = (ci)0≤i<n,d = (di)0≤i<n in Fn3 ,

∀i,0 ≤ i < n, ai 6= 0, ci 6= 0, aidi − bici 6= 0

• ’?’ denotes the component-wise product
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Generalized Ternary (U |U + V ) Codes (continued)

We denote C the generalized (U |U+V ) code associated to (U, V, a,b, c,d).

The code C admits the following generator matrix

G =

 a ?GU c ?GU

b ?GV d ?GV

 ∈ Fk×n3

where GU ∈ F
kU×n/2
3 and GV ∈ F

kV×n/2
3 are any generator matrices of U

and V respectively.

Finally note that the dual of C is also a generalized (U |U + V ) code

(associated to (V ⊥, U⊥,−c,d, a,−b))
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Generalized Ternary (U |U + V ) Codes – Trapdoor Decoder

There exists a probabilistic decoding procedure for C

ΦC,w : Fn−k3 −→ Fn3
s 7−→ e such that eHᵀ = s, |e| = w

which takes benefit of the (U |U + V ) structure and runs successfully in

polynomial time for a range of values w > k + 2
3(n− k).

(recall that generic decoding is hard for such w)

w
generic

Wave

Hard Easy Hard

Hard Easy Hard

Trapdoor
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Wave

Hash-and-Sign signature scheme:

• Public: a ternary [n, k] code Cpub

• Secret: a (trapdoor) decoder for w errors in Cpub

(Cpub a permuted generalized ternary (U |U + V ) code)

• Signature: the solution of a decoding problem for w errors in Cpub,

the instance is obtained by hashing the message

Security:

• Solving DP∞(3;n, k, w) is hard enough

• Distinguishing Cpub from random is hard enough
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More on Wave Security

Wave is proven EUF-CMA using a GPV-like framework.

Requires the output distribution of the trapdoor function to be indepen-

dent of the secret → immunity to statistical attacks.

→ an additional parameter g, the gap, used in the decoder, was intro-

duced to ensure a uniformity condition for the proof.

(The gap is such that, essentially, any m × (m + g) ternary matrix has

rank m with high enough probability,

e.g. in NIST’s threat model g = 40 ≈ 64/ log2 3)
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Selecting Parameters for Wave

1. Choose n, k (k = n/2 for NIST) and g

2. Choose kU , w (and kV = k − kU) such that

w =
2

3
(n+ kU − g)

(
and w >

2

3
(n− k) + k

)
w large is best against forgery attacks

kU small is best against key attacks.

→ there is a trade-off to optimize step 2.
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Best Known Attack Against Computational Assumptions

Forgery Attacks: Solve DP∞(3;n, k, w) when w is large. Best known

approach [Bricout, Chailloux, Debris-Alazard, Lequesne, 2019] is In-

formation Set Decoding (ISD) + Wagner’s Generalized Birthday Al-

gorithm (GBA).

Key Attacks: Distinguish Cpub from random.

Best known approach: find unusual codewords (type-U or type-V ,

definition coming next. . . )
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Forgery Attack

0.005

0.01

0.015

0.02

0.025

0.86 0.87 0.88 0.89 0.9 0.91

asymptotic exponent c

k = 0.5 · n

error rate w/n

Computational cost (asymptotic) for solving DP∞(3;n, k, w) with ISD+GBA

(classical)

WF = 2c·n

To reach λ = 128 bits of (classical) security:

w = 0.92 · n→ c = 0.03→ n ≥ 4 267

w = 0.87 · n→ c = 0.0058→ n ≥ 22 000
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Weight Distribution of Generalized (U |U + V ) Codes

Except for the two following subcodes:

type-U: U(C) = {(a ? u, c ? u) | u ∈ U}

type-V : V(C) = {(b ? v,d ? v) | v ∈ V }

the weight distribution of a (permuted) generalized (U |U + V ) is as for

a random code, [Debris-Alazard, PhD, 2019].
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Weight Distribution of Generalized (U |U + V ) Codes

U(C, j) = {(a ? u, c ? u) | u ∈ U, |u| = j}

has cardinality
(n/2
j )2j

3n/2−kU
and contains words of weight t = 2j

V(C, j) = {(b ? v,d ? v) | v ∈ V, |v| = j}

has cardinality
(n/2
j )2j

3n/2−kV
and contains words of weight t ∈ [j,2j]

(average weight is 4
3 · j)

A random ternary [n, k] code contains
(nt)2t

3n−k
words of weight t
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Weight Distribution of Generalized (U |U + V ) Codes

0

0.2

0.4
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random [n, k] code

type-U

type-V

error rate t/n

1

n
log2(#)

k = n
2
, kU = 0.693 · n

2

Example: for t = 0.209 · n in the above figure:

• the number of “random” codewords is 20.156·n

• the number of type-U codewords is 20.231·n

• the number of type-V codewords is 20.0169·n
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Key Attack: Finding Unexpected Codewords

For Wave relevant parameters, there are always fewer type-V than type-U

codewords.

For extremal weights type-U codewords may dominate, and the cost

for finding words of that weight in Cpub (or C⊥pub) will be smaller than

expected in a random code. This provides a distinguisher whose cost is

obtained by minimizing over all weights.

To estimate this cost, codewords are searched with the variant of ISD

due to [May, Meurer, Thomae, 2011].
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Forgery and Key Attacks – Trade-off

0.005

0.01

0.015

0.02

0.025

0.86 0.87 0.88 0.89 0.9 0.91

g = 0.315 c · n

asymptotic exponent c

k = 0.5 · n

error rate w/n

ISD+GBA

For fixed n, k, g, the cost for finding type-U codewords depends on kU .

Using the relation w = 2
3(n+kU−g), this cost can be viewed as a function

of w plotted above in blue together with the forgery cost.

The intersection of the curves corresponds to the optimal parameters.
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Wave Parameters

NIST parameters are for k = n/2

The security parameter λ corresponds to classical security bits

Quantum security is always ≥ λ/2 bits

NIST λ n k w kU kV g

Level I 128 8 576 4 288 7 668 2 966 1 322 40

Level III 192 12 544 6 272 11 226 4 335 1 937 40

Level V 256 16 512 8 256 14 784 5 704 2 552 40

Signature length (bytes) Key size

avg. entropy max length (MBytes)

Level I 772.5 822 3.68

Level III 1129.8 1249 7.87

Level V 1487.0 1644 13.63
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Conclusion

• Signature length scales linearly with security

• Key size scales quadratically with security

• The parameter selection process is easy to adapt if/when forgery or

key attacks improve

• Code rate 1/2 features a good trade-off between signature length

and key size

(higher rates reduce the signature length)

(lower rates reduce the key size)
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