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NTRU
Let R = Z[x ]/f (x)Z[x ] be a polynomial ring, deg(f ) = n, q ≥ 2.

NTRU Assumption
Let g , f ∈ R be ‘short’ and f invertible mod q.
Given h := f −1 · g mod q, it is hard to recover g and f .

A lattice problem:

Lh,q := {(x , y) ∈ R2 : xh − y ≡ 0 mod q}

NTRU Assumption: it is hard to find short vectors in Lh,q (wrt.
the Euclidean norm).

Reasons for assuming: [FPMS22], [PMS21], ... and time.

What about different R?
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Some NTRU Variants
NTRU as matrices: suppose f (x) = xn + 1, n a power of two.
Fix basis {1, x , ..., xn−1}, write fh − g = 0 mod q as

f0 −fn−1 . . . −f1
f1 f0 . . . −f2
...

...
. . .

...
fn−1 fn−2 . . . f0




h0
h1
...

hn−1

−


g0
g1
...

gn−1

 = 0 mod q

[CG05],[CPSWX19],[CKKS19]: f (x) = xn + 1. Fh = g ∈ Rk
q .

Lh,q = {(F, g) ∈ Rk×(k+1) : Fh− g = 0 mod q}
f0,0 f0,1 . . . f0,k−1

f1,0 f1,1 . . . f1,k−1
...

...
. . .

...
fk−1,0 fk−1,1 . . . fk−1,k−1




h0
h1
...

hn−1

−


g0
g1
...

gn−1

 = 0 mod q
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An NTRU PKE Scheme

Setup

q ≫ p : gcd(q, p) = 1. Message m ∈ Rp. h := f −1g mod q.

KeyGen: (pk, sk) = (h, (f , g)) where f is invertible mod q and
f ≡ 1 mod p.

Encrypt m: e, t ← Rq. Set c = p · (h · t + e) +m mod q
Decrypt c : compute m mod p = (f · c mod q) mod p.
Correctness: works if ∥pgt + pfe + fm∥∞ < q

2

We don’t need ab = ba for decryption (except pf = fp).
So one could run this over many noncommutative rings.
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Quaternion Algebras

Setup

n = 2r , ℓ an odd prime: ℓ ≡ 1 mod n and ℓ ̸≡ 1 mod 2n.
K := Q(ζn) and L := Q(ζn,

√
ℓ). θ ∈ Gal(L/K) nontrivial.

Quaternion algebra:
A = L⊕ uL,

with u2 = ζn, and xu = uθ(x) for all x ∈ L.

Orders: subrings which are full-rank lattices; e.g. ‘natural’ order:

Λ := OL ⊕ uOL

Λ is a maximal order in A.

Λq := Λ/qΛ = OL/qOL ⊕ uOL/qOL
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NTRU in Cyclic Algebras: CNTRU
n = 2r , ℓ an odd prime: ℓ ≡ 1 mod n and ℓ ̸≡ 1 mod 2n.
K := Q(ζn), L := Q(ζn,

√
ℓ), θ ∈ Gal(L/K ). Λ := OL ⊕ uOL.

CNTRU Assumption
Let g , f ∈ Λ be ‘short’ and f mod qΛ invertible.
Given h := f −1 · g mod qΛ, it is hard to recover g and f .

A lattice problem:

Lh,q := {(x , y) ∈ Λ2 : xh − y ≡ 0 mod qΛ}

CNTRU Assumption: it is hard to find short vectors in Lh,q
(wrt. the Euclidean norm, for some embedding Λ ↪→ R2n).

We change the above PKE scheme to obtain IND-CPA security
from Cyclic LWE.
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Cyclic LWE: a structured LWE problem
LR = L⊗Q R.
Ψ = a family of error distributions over LR ⊕ uLR.

CLWE distribution
For error distribution ψ ∈ Ψ, q ≥ 2, and secret s ∈ Λq, a sample from the
CLWE distribution Πq,s,ψ is obtained by sampling e ← ψ, a← Λq uniformly
at random, and outputting

(a, b) = (a, as + e mod qΛ) ∈ Λq × (LR ⊕ uLR)/qΛ

Search CLWE: recover s from a collection of independent
samples for any s ∈ Λq and ψ ∈ Ψ.
Decision CLWE: given independent samples from Πq,s,ψ for
random (s, ψ) or uniform samples, decide which is the case whp.

[GMLV22]: a reduction from SIVP on ideal lattices in Λ to
search CLWE, and a (restricted) search-to-decision reduction.
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Cyclic NTRU: a structured problem

Write f = f0 + uf1, h = h0 + uh1 ∈ OL + uOL. Then

f · h = f0h0 + ζnθ(f1)h1 + u
(
f1h0 + θ(f0)h1

)

So with L-basis {1, u} of Λ, write f · h − g = 0 mod qΛ as(
f0 γθ(f1)
f1 θ(f0)

)(
h0
h1

)
−
(
g0
g1

)
= 0 mod qΛ

Compare to [CPSWX19],[CKKS19] in rank 2:(
f0 f2
f1 f3

)(
h0
h1

)
−
(
g0
g1

)
= 0 mod qΛ
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Contributions, and Why?

Contributions

1. Uniformity of CNTRU public keys (requires results on q-ary lattices
from maximal orders in quaternion algebras)

2. IND-CPA secure CNTRU PKE, assuming CLWE (requires bounded ℓ)

3. Extra CNTRU cryptographic functionality: KEM, signatures

Motivations

1. [CKKS19] has no security proof. [CPSWX19] proves uniformity of
public keys for partially split q - but recommends fully split q for
efficiency. We prove uniformity of public keys for fully split q.

2. To understand cryptographic properties in CDAs - and of CLWE.

3. Quaternions algebras offer a natural generalisation of number fields.

xxi
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CNTRU PKE
Trace form: x = x0 + ux1 ∈ Λ.

Tr(x) := TrK/Q

(
trace

(
x0 γθ(x1)
x1 θ(x0)

))
Then

Λ∨ = {x ∈ A : Tr(xΛ) ⊂ Z}

DΛ,σ = discrete Gaussian. Dσ = Gaussian over L2R. p ∈ Λ×
q .

χ := ⌊Dσ⌉Λ∨ , where ⌊·⌉Λ∨ is a discretisation.

KeyGen: Sample f ′, g ← DΛ,σ. Set f := p · f ′ + 1; if
f mod q /∈ Λ×

q , resample. If g mod q /∈ Λ×
q , resample.

Return sk = (f , g) and pk = h = f −1pg ∈ Λ×
q .

Encryption: Given m ∈ Λ∨
p , sample s, e ←↩ χ and return

c = hs + pe +m ∈ Λ∨
q .

Decryption: Given c and secret key f , compute
(f · c mod q) mod p.

xxiii
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IND-CPA Security

IND-CPA: let A be a IND-CPA attack algorithm. Follow [SS11]:
Use A to construct algorithm B against (a variant of) CLWE.

1. B has LWE sample (a, c ′) = (a, as + e) ∈ Λ×
q × Λ∨

q .
2. B runs A with pk = h = p · a ∈ Λq.
3. A outputs messages m0,m1 ∈ Λ∨

p , then B b ←↩ U({0, 1}),
computes c = p · c ′ +mb, and sends c to A.
So A has (pa, pc ′ +mb) = (h, hs + pe +mb).

4. A guesses b′ for b. If b′ = b, B outputs 1. Else, B outputs 0.

xxvi
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Bounded ℓ
The proof of IND-CPA security requires h be uniform. We prove:

Let ϵ > 0, q be a completely split prime, p ∈ Z(Λ×
q ), and

σ ≥ 4n3/2 4
√
ℓ
√

2 ln(32nq)q
1
2
+2ϵ.

Let yi ∈ Λq and zi = −yip−1 mod q for i = 1, 2, and D×
σ,zi denote DΛ,σ

restricted by rejection to Λ×
q + zi . Then

∆

(
y1 + pD×

σ,z1

y2 + pD×
σ,z2

mod q,U
(
Λ×
q

))
≤ 222nq−8nϵ.

disc(Λ/Z) :=
{
det (Tr (xixj))

nd2

i ,j=1 | (x1, . . . , xnd2) ∈ Λnd2
}

disc(Λ/Z) ≤ (n
√
ℓ)4n

Let I be an ideal of Λ. Then

λ1(I) ≤ (nd2)1/2NA/Q(I)1/nd
2
disc(Λ/Z)1/2nd

2
.
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Thankyou for Listening! And Future Work

• Trapdoor basis of CNTRU lattice

• Higher index CDAs?

xxx
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