Imperial College

NTRU in Quaternion Algebras of Bounded Discriminant

Cong Ling \& Andrew Mendelsohn

Imperial College

 London
NTRU

Let $\mathcal{R}=\mathbb{Z}[x] / f(x) \mathbb{Z}[x]$ be a polynomial ring, $\operatorname{deg}(f)=n, q \geq 2$.

NTRU Assumption

Let $g, f \in \mathcal{R}$ be 'short' and f invertible $\bmod q$.
Given $h:=f^{-1} \cdot g \bmod q$, it is hard to recover g and f.

Imperial College

NTRU

Let $\mathcal{R}=\mathbb{Z}[x] / f(x) \mathbb{Z}[x]$ be a polynomial ring, $\operatorname{deg}(f)=n, q \geq 2$.

NTRU Assumption

Let $g, f \in \mathcal{R}$ be 'short' and f invertible $\bmod q$.
Given $h:=f^{-1} \cdot g \bmod q$, it is hard to recover g and f.
A lattice problem:

$$
\mathcal{L}_{h, q}:=\left\{(x, y) \in \mathcal{R}^{2}: x h-y \equiv 0 \bmod q\right\}
$$

NTRU Assumption: it is hard to find short vectors in $\mathcal{L}_{h, q}$ (wrt. the Euclidean norm).

NTRU

Let $\mathcal{R}=\mathbb{Z}[x] / f(x) \mathbb{Z}[x]$ be a polynomial ring, $\operatorname{deg}(f)=n, q \geq 2$.

NTRU Assumption

Let $g, f \in \mathcal{R}$ be 'short' and f invertible $\bmod q$.
Given $h:=f^{-1} \cdot g \bmod q$, it is hard to recover g and f.
A lattice problem:

$$
\mathcal{L}_{h, q}:=\left\{(x, y) \in \mathcal{R}^{2}: x h-y \equiv 0 \bmod q\right\}
$$

NTRU Assumption: it is hard to find short vectors in $\mathcal{L}_{h, q}$ (wrt. the Euclidean norm).

Reasons for assuming: [FPMS22], [PMS21], ... and time.
What about different \mathcal{R} ?

Imperial College

Some NTRU Variants

NTRU as matrices: suppose $f(x)=x^{n}+1, n$ a power of two.
Fix basis $\left\{1, x, \ldots, x^{n-1}\right\}$, write $f h-g=0 \bmod q$ as

$$
\left(\begin{array}{cccc}
f_{0} & -f_{n-1} & \ldots & -f_{1} \\
f_{1} & f_{0} & \ldots & -f_{2} \\
\vdots & \vdots & \ddots & \vdots \\
f_{n-1} & f_{n-2} & \cdots & f_{0}
\end{array}\right)\left(\begin{array}{c}
h_{0} \\
h_{1} \\
\vdots \\
h_{n-1}
\end{array}\right)-\left(\begin{array}{c}
g_{0} \\
g_{1} \\
\vdots \\
g_{n-1}
\end{array}\right)=\mathbf{0} \bmod q
$$

Imperial College

Some NTRU Variants

NTRU as matrices: suppose $f(x)=x^{n}+1, n$ a power of two.
Fix basis $\left\{1, x, \ldots, x^{n-1}\right\}$, write $f h-g=0 \bmod q$ as

$$
\left(\begin{array}{cccc}
f_{0} & -f_{n-1} & \ldots & -f_{1} \\
f_{1} & f_{0} & \ldots & -f_{2} \\
\vdots & \vdots & \ddots & \vdots \\
f_{n-1} & f_{n-2} & \cdots & f_{0}
\end{array}\right)\left(\begin{array}{c}
h_{0} \\
h_{1} \\
\vdots \\
h_{n-1}
\end{array}\right)-\left(\begin{array}{c}
g_{0} \\
g_{1} \\
\vdots \\
g_{n-1}
\end{array}\right)=\mathbf{0} \bmod q
$$

[CG05],[CPSWX19],[CKKS19]: $f(x)=x^{n}+1 . \mathbf{F h}=\mathbf{g} \in \mathcal{R}_{q}^{k}$.

$$
\begin{gathered}
\mathcal{L}_{\mathbf{h}, q}=\left\{(\mathbf{F}, \mathbf{g}) \in \mathcal{R}^{k \times(k+1)}: \mathbf{F h}-\mathbf{g}=\mathbf{0} \bmod q\right\} \\
\left(\begin{array}{cccc}
f_{0,0} & f_{0,1} & \ldots & f_{0, k-1} \\
f_{1,0} & f_{1,1} & \ldots & f_{1, k-1} \\
\vdots & \vdots & \ddots & \vdots \\
f_{k-1,0} & f_{k-1,1} & \ldots & f_{k-1, k-1}
\end{array}\right)\left(\begin{array}{c}
h_{0} \\
h_{1} \\
\vdots \\
h_{n-1}
\end{array}\right)-\left(\begin{array}{c}
g_{0} \\
g_{1} \\
\vdots \\
g_{n-1}
\end{array}\right)=\mathbf{0} \bmod q
\end{gathered}
$$

Imperial College

An NTRU PKE Scheme

Setup

$q \gg p: \operatorname{gcd}(q, p)=1$. Message $m \in \mathcal{R}_{p} . h:=f^{-1} g \bmod q$.
KeyGen: $(p k, s k)=(h,(f, g))$ where f is invertible $\bmod q$ and $f \equiv 1 \bmod p$.
Encrypt $m: e, t \leftarrow \mathcal{R}_{q}$. Set $c=p \cdot(h \cdot t+e)+m \bmod q$ Decrypt $c:$ compute $m \bmod p=(f \cdot c \bmod q) \bmod p$.
Correctness: works if $\|p g t+p f e+f m\|_{\infty}<\frac{q}{2}$

Imperial College

London

An NTRU PKE Scheme

Setup

$q \gg p: \operatorname{gcd}(q, p)=1$. Message $m \in \mathcal{R}_{p} . h:=f^{-1} g \bmod q$.
KeyGen: $(p k, s k)=(h,(f, g))$ where f is invertible $\bmod q$ and $f \equiv 1 \bmod p$.
Encrypt $m: e, t \leftarrow \mathcal{R}_{q}$. Set $c=p \cdot(h \cdot t+e)+m \bmod q$
Decrypt $c:$ compute $m \bmod p=(f \cdot c \bmod q) \bmod p$.
Correctness: works if $\|p g t+p f e+f m\|_{\infty}<\frac{q}{2}$
We don't need $a b=b a$ for decryption (except $p f=f p$). So one could run this over many noncommutative rings.

Quaternion Algebras

Setup

$n=2^{r}, \ell$ an odd prime: $\ell \equiv 1 \bmod n$ and $\ell \not \equiv 1 \bmod 2 n$.
$K:=\mathbb{Q}\left(\zeta_{n}\right)$ and $L:=\mathbb{Q}\left(\zeta_{n}, \sqrt{\ell}\right) . \theta \in \operatorname{Gal}(L / K)$ nontrivial.

Quaternion Algebras

Setup

$n=2^{r}, \ell$ an odd prime: $\ell \equiv 1 \bmod n$ and $\ell \not \equiv 1 \bmod 2 n$.
$K:=\mathbb{Q}\left(\zeta_{n}\right)$ and $L:=\mathbb{Q}\left(\zeta_{n}, \sqrt{\ell}\right) . \theta \in \operatorname{Gal}(L / K)$ nontrivial.
Quaternion algebra:

$$
\mathcal{A}=L \oplus u L
$$

with $u^{2}=\zeta_{n}$, and $x u=u \theta(x)$ for all $x \in L$.

Quaternion Algebras

Setup

$n=2^{r}, \ell$ an odd prime: $\ell \equiv 1 \bmod n$ and $\ell \not \equiv 1 \bmod 2 n$.
$K:=\mathbb{Q}\left(\zeta_{n}\right)$ and $L:=\mathbb{Q}\left(\zeta_{n}, \sqrt{\ell}\right) . \theta \in \operatorname{Gal}(L / K)$ nontrivial.
Quaternion algebra:

$$
\mathcal{A}=L \oplus u L
$$

with $u^{2}=\zeta_{n}$, and $x u=u \theta(x)$ for all $x \in L$.
Orders: subrings which are full-rank lattices; e.g. 'natural' order:

$$
\Lambda:=\mathcal{O}_{L} \oplus u \mathcal{O}_{L}
$$

Λ is a maximal order in \mathcal{A}.

$$
\Lambda_{q}:=\Lambda / q \Lambda=\mathcal{O}_{L} / q \mathcal{O}_{L} \oplus u \mathcal{O}_{L} / q \mathcal{O}_{L}
$$

Imperial College

London

NTRU in Cyclic Algebras: CNTRU

$n=2^{r}, \ell$ an odd prime: $\ell \equiv 1 \bmod n$ and $\ell \not \equiv 1 \bmod 2 n$.
$K:=\mathbb{Q}\left(\zeta_{n}\right), L:=\mathbb{Q}\left(\zeta_{n}, \sqrt{\ell}\right), \theta \in \operatorname{Gal}(L / K) . \Lambda:=\mathcal{O}_{L} \oplus u \mathcal{O}_{L}$.

CNTRU Assumption

Let $g, f \in \Lambda$ be 'short' and $f \bmod q \Lambda$ invertible.
Given $h:=f^{-1} \cdot g \bmod q \Lambda$, it is hard to recover g and f.

Imperial College

NTRU in Cyclic Algebras: CNTRU

$n=2^{r}, \ell$ an odd prime: $\ell \equiv 1 \bmod n$ and $\ell \not \equiv 1 \bmod 2 n$.
$K:=\mathbb{Q}\left(\zeta_{n}\right), L:=\mathbb{Q}\left(\zeta_{n}, \sqrt{\ell}\right), \theta \in \operatorname{Gal}(L / K) . \Lambda:=\mathcal{O}_{L} \oplus u \mathcal{O}_{L}$.

CNTRU Assumption

Let $g, f \in \Lambda$ be 'short' and $f \bmod q \Lambda$ invertible.
Given $h:=f^{-1} \cdot g \bmod q \Lambda$, it is hard to recover g and f.
A lattice problem:

$$
\mathcal{L}_{h, q}:=\left\{(x, y) \in \Lambda^{2}: x h-y \equiv 0 \bmod q \Lambda\right\}
$$

CNTRU Assumption: it is hard to find short vectors in $\mathcal{L}_{h, q}$ (wrt. the Euclidean norm, for some embedding $\Lambda \hookrightarrow \mathbb{R}^{2 n}$).

Imperial College

NTRU in Cyclic Algebras: CNTRU

$n=2^{r}, \ell$ an odd prime: $\ell \equiv 1 \bmod n$ and $\ell \not \equiv 1 \bmod 2 n$.
$K:=\mathbb{Q}\left(\zeta_{n}\right), L:=\mathbb{Q}\left(\zeta_{n}, \sqrt{\ell}\right), \theta \in \operatorname{Gal}(L / K) . \Lambda:=\mathcal{O}_{L} \oplus u \mathcal{O}_{L}$.

CNTRU Assumption

Let $g, f \in \Lambda$ be 'short' and $f \bmod q \Lambda$ invertible.
Given $h:=f^{-1} \cdot g \bmod q \Lambda$, it is hard to recover g and f.
A lattice problem:

$$
\mathcal{L}_{h, q}:=\left\{(x, y) \in \Lambda^{2}: x h-y \equiv 0 \bmod q \Lambda\right\}
$$

CNTRU Assumption: it is hard to find short vectors in $\mathcal{L}_{h, q}$ (wrt. the Euclidean norm, for some embedding $\Lambda \hookrightarrow \mathbb{R}^{2 n}$).

We change the above PKE scheme to obtain IND-CPA security from Cyclic LWE.

Imperial College

Cyclic LWE: a structured LWE problem

$L_{\mathbb{R}}=L \otimes_{\mathbb{Q}} \mathbb{R}$.
$\Psi=$ a family of error distributions over $L_{\mathbb{R}} \oplus u L_{\mathbb{R}}$.

CLWE distribution

For error distribution $\psi \in \Psi, q \geq 2$, and secret $s \in \Lambda_{q}$, a sample from the CLWE distribution $\Pi_{q, s, \psi}$ is obtained by sampling $e \leftarrow \psi, a \leftarrow \Lambda_{q}$ uniformly at random, and outputting

$$
(a, b)=(a, a s+e \bmod q \Lambda) \in \Lambda_{q} \times\left(L_{\mathbb{R}} \oplus u L_{\mathbb{R}}\right) / q \Lambda
$$

Imperial College

 London
Cyclic LWE: a structured LWE problem

$L_{\mathbb{R}}=L \otimes_{\mathbb{Q}} \mathbb{R}$.
$\Psi=$ a family of error distributions over $L_{\mathbb{R}} \oplus u L_{\mathbb{R}}$.

CLWE distribution

For error distribution $\psi \in \Psi, q \geq 2$, and secret $s \in \Lambda_{q}$, a sample from the CLWE distribution $\Pi_{q, s, \psi}$ is obtained by sampling $e \leftarrow \psi, a \leftarrow \Lambda_{q}$ uniformly at random, and outputting

$$
(a, b)=(a, a s+e \bmod q \Lambda) \in \Lambda_{q} \times\left(L_{\mathbb{R}} \oplus u L_{\mathbb{R}}\right) / q \Lambda
$$

Search CLWE: recover s from a collection of independent samples for any $s \in \Lambda_{q}$ and $\psi \in \Psi$.
Decision CLWE: given independent samples from $\Pi_{q, s, \psi}$ for random (s, ψ) or uniform samples, decide which is the case whp.

Imperial College

 London
Cyclic LWE: a structured LWE problem

$L_{\mathbb{R}}=L \otimes_{\mathbb{Q}} \mathbb{R}$.
$\Psi=$ a family of error distributions over $L_{\mathbb{R}} \oplus u L_{\mathbb{R}}$.

CLWE distribution

For error distribution $\psi \in \Psi, q \geq 2$, and secret $s \in \Lambda_{q}$, a sample from the CLWE distribution $\Pi_{q, s, \psi}$ is obtained by sampling $e \leftarrow \psi, a \leftarrow \Lambda_{q}$ uniformly at random, and outputting

$$
(a, b)=(a, a s+e \bmod q \Lambda) \in \Lambda_{q} \times\left(L_{\mathbb{R}} \oplus u L_{\mathbb{R}}\right) / q \Lambda
$$

Search CLWE: recover s from a collection of independent samples for any $s \in \Lambda_{q}$ and $\psi \in \psi$.
Decision CLWE: given independent samples from $\Pi_{q, s, \psi}$ for random (s, ψ) or uniform samples, decide which is the case whp.
[GMLV22]: a reduction from SIVP on ideal lattices in Λ to search CLWE, and a (restricted) search-to-decision reduction.

Imperial College

 London
Cyclic NTRU: a structured problem

Write $f=f_{0}+u f_{1}, h=h_{0}+u h_{1} \in \mathcal{O}_{L}+u \mathcal{O}_{L}$. Then

$$
f \cdot h=f_{0} h_{0}+\zeta_{n} \theta\left(f_{1}\right) h_{1}+u\left(f_{1} h_{0}+\theta\left(f_{0}\right) h_{1}\right)
$$

Imperial College

Cyclic NTRU: a structured problem

Write $f=f_{0}+u f_{1}, h=h_{0}+u h_{1} \in \mathcal{O}_{L}+u \mathcal{O}_{L}$. Then

$$
f \cdot h=f_{0} h_{0}+\zeta_{n} \theta\left(f_{1}\right) h_{1}+u\left(f_{1} h_{0}+\theta\left(f_{0}\right) h_{1}\right)
$$

So with L-basis $\{1, u\}$ of Λ, write $f \cdot h-g=0 \bmod q \Lambda$ as

$$
\left(\begin{array}{cc}
f_{0} & \gamma \theta\left(f_{1}\right) \\
f_{1} & \theta\left(f_{0}\right)
\end{array}\right)\binom{h_{0}}{h_{1}}-\binom{g_{0}}{g_{1}}=\mathbf{0} \bmod q \Lambda
$$

Imperial College

Cyclic NTRU: a structured problem

Write $f=f_{0}+u f_{1}, h=h_{0}+u h_{1} \in \mathcal{O}_{L}+u \mathcal{O}_{L}$. Then

$$
f \cdot h=f_{0} h_{0}+\zeta_{n} \theta\left(f_{1}\right) h_{1}+u\left(f_{1} h_{0}+\theta\left(f_{0}\right) h_{1}\right)
$$

So with L-basis $\{1, u\}$ of Λ, write $f \cdot h-g=0 \bmod q \Lambda$ as

$$
\left(\begin{array}{cc}
f_{0} & \gamma \theta\left(f_{1}\right) \\
f_{1} & \theta\left(f_{0}\right)
\end{array}\right)\binom{h_{0}}{h_{1}}-\binom{g_{0}}{g_{1}}=\mathbf{0} \bmod q \wedge
$$

Compare to [CPSWX19],[CKKS19] in rank 2:

$$
\left(\begin{array}{ll}
f_{0} & f_{2} \\
f_{1} & f_{3}
\end{array}\right)\binom{h_{0}}{h_{1}}-\binom{g_{0}}{g_{1}}=\mathbf{0} \bmod q \Lambda
$$

Imperial College London

Contributions, and Why?

Contributions

1. Uniformity of CNTRU public keys (requires results on q-ary lattices from maximal orders in quaternion algebras)
2. IND-CPA secure CNTRU PKE, assuming CLWE (requires bounded ℓ)
3. Extra CNTRU cryptographic functionality: KEM, signatures

Imperial College London

Contributions, and Why?

Contributions

1. Uniformity of CNTRU public keys (requires results on q-ary lattices from maximal orders in quaternion algebras)
2. IND-CPA secure CNTRU PKE, assuming CLWE (requires bounded ℓ)
3. Extra CNTRU cryptographic functionality: KEM, signatures

Motivations

1. [CKKS19] has no security proof. [CPSWX19] proves uniformity of public keys for partially split q - but recommends fully split q for efficiency. We prove uniformity of public keys for fully split q.
2. To understand cryptographic properties in CDAs - and of CLWE.
3. Quaternions algebras offer a natural generalisation of number fields.

Imperial College

London

CNTRU PKE

Trace form: $x=x_{0}+u x_{1} \in \Lambda$.

$$
\operatorname{Tr}(x):=\operatorname{Tr}_{K / \mathbb{Q}}\left(\operatorname{trace}\left(\begin{array}{cc}
x_{0} & \gamma \theta\left(x_{1}\right) \\
x_{1} & \theta\left(x_{0}\right)
\end{array}\right)\right)
$$

Then

$$
\Lambda^{\vee}=\{x \in \mathcal{A}: \operatorname{Tr}(x \Lambda) \subset \mathbb{Z}\}
$$

CNTRU PKE

Trace form: $x=x_{0}+u x_{1} \in \Lambda$.

$$
\operatorname{Tr}(x):=\operatorname{Tr}_{K / \mathbb{Q}}\left(\operatorname{trace}\left(\begin{array}{cc}
x_{0} & \gamma \theta\left(x_{1}\right) \\
x_{1} & \theta\left(x_{0}\right)
\end{array}\right)\right)
$$

Then

$$
\Lambda^{\vee}=\{x \in \mathcal{A}: \operatorname{Tr}(x \Lambda) \subset \mathbb{Z}\}
$$

$D_{\Lambda, \sigma}=$ discrete Gaussian. $D_{\sigma}=$ Gaussian over $L_{\mathbb{R}}^{2} \cdot p \in \Lambda_{q}^{\times}$. $\chi:=\left\lfloor D_{\sigma}\right\rceil_{\Lambda \vee}$, where $\lfloor\cdot\rceil_{\Lambda \vee}$ is a discretisation.

Imperial College

CNTRU PKE

Trace form: $x=x_{0}+u x_{1} \in \Lambda$.

$$
\operatorname{Tr}(x):=\operatorname{Tr}_{K / \mathbb{Q}}\left(\operatorname{trace}\left(\begin{array}{cc}
x_{0} & \gamma \theta\left(x_{1}\right) \\
x_{1} & \theta\left(x_{0}\right)
\end{array}\right)\right)
$$

Then

$$
\Lambda^{\vee}=\{x \in \mathcal{A}: \operatorname{Tr}(x \Lambda) \subset \mathbb{Z}\}
$$

$D_{\Lambda, \sigma}=$ discrete Gaussian. $D_{\sigma}=$ Gaussian over $L_{\mathbb{R}}^{2}, p \in \Lambda_{q}^{\times}$.
$\chi:=\left\lfloor D_{\sigma}\right\rceil_{\Lambda \vee}$, where $\lfloor\cdot\rceil_{\Lambda \vee}$ is a discretisation.
KeyGen: Sample $f^{\prime}, g \leftarrow D_{\Lambda, \sigma}$. Set $f:=p \cdot f^{\prime}+1$; if $f \bmod q \notin \Lambda_{q}^{\times}$, resample. If $g \bmod q \notin \Lambda_{q}^{\times}$, resample. Return $s k=(f, g)$ and $p k=h=f^{-1} p g \in \Lambda_{q}^{\times}$.
Encryption: Given $m \in \Lambda_{p}^{\vee}$, sample $s, e \hookleftarrow \chi$ and return

$$
c=h s+p e+m \in \Lambda_{q}^{\vee} .
$$

Decryption: Given c and secret key f, compute $(f \cdot c \bmod q) \bmod p$.

Imperial College

 London
IND-CPA Security

IND-CPA: let \mathcal{A} be a IND-CPA attack algorithm. Follow [SS11]: Use \mathcal{A} to construct algorithm \mathcal{B} against (a variant of) CLWE.

Imperial College

IND-CPA Security

IND-CPA: let \mathcal{A} be a IND-CPA attack algorithm. Follow [SS11]:
Use \mathcal{A} to construct algorithm \mathcal{B} against (a variant of) CLWE.

1. \mathcal{B} has LWE sample $\left(a, c^{\prime}\right)=(a, a s+e) \in \Lambda_{q}^{\times} \times \Lambda_{q}^{\vee}$.
2. \mathcal{B} runs \mathcal{A} with $p k=h=p \cdot a \in \Lambda_{q}$.
3. \mathcal{A} outputs messages $m_{0}, m_{1} \in \Lambda_{p}^{\vee}$, then $\mathcal{B} b \hookleftarrow U(\{0,1\})$, computes $c=p \cdot c^{\prime}+m_{b}$, and sends c to \mathcal{A}.
So \mathcal{A} has $\left(p a, p c^{\prime}+m_{b}\right)=\left(h, h s+p e+m_{b}\right)$.
4. \mathcal{A} guesses b^{\prime} for b. If $b^{\prime}=b, \mathcal{B}$ outputs 1 . Else, \mathcal{B} outputs 0 .

Imperial College

 London
Bounded ℓ

The proof of IND-CPA security requires h be uniform. We prove:
Let $\epsilon>0, q$ be a completely split prime, $p \in \mathcal{Z}\left(\Lambda_{q}^{\times}\right)$, and

$$
\sigma \geq 4 n^{3 / 2} \sqrt[4]{\ell} \sqrt{2 \ln (32 n q)} q^{\frac{1}{2}+2 \epsilon}
$$

Let $y_{i} \in \Lambda_{q}$ and $z_{i}=-y_{i} p^{-1} \bmod q$ for $i=1,2$, and $D_{\sigma, z_{i}}^{\times}$denote $D_{\Lambda, \sigma}$ restricted by rejection to $\Lambda_{q}^{\times}+z_{i}$. Then

$$
\Delta\left(\frac{y_{1}+p D_{\sigma, z_{1}}^{\times}}{y_{2}+p D_{\sigma, z_{2}}^{\times}} \bmod q, U\left(\Lambda_{q}^{\times}\right)\right) \leq 2^{22 n} q^{-8 n \epsilon} .
$$

Imperial College London

Bounded ℓ

The proof of IND-CPA security requires h be uniform. We prove:
Let $\epsilon>0$, q be a completely split prime, $p \in \mathcal{Z}\left(\Lambda_{q}^{\times}\right)$, and

$$
\sigma \geq 4 n^{3 / 2} \sqrt[4]{\ell} \sqrt{2 \ln (32 n q)} q^{\frac{1}{2}+2 \epsilon}
$$

Let $y_{i} \in \Lambda_{q}$ and $z_{i}=-y_{i} p^{-1} \bmod q$ for $i=1,2$, and $D_{\sigma, z_{i}}^{\times}$denote $D_{\Lambda, \sigma}$ restricted by rejection to $\Lambda_{q}^{\times}+z_{i}$. Then

$$
\Delta\left(\frac{y_{1}+p D_{\sigma, z_{1}}^{\times}}{y_{2}+p D_{\sigma, z_{2}}^{\times}} \bmod q, U\left(\Lambda_{q}^{\times}\right)\right) \leq 2^{22 n} q^{-8 n \epsilon}
$$

$$
\begin{gathered}
\operatorname{disc}(\Lambda / \mathbb{Z}):=\left\{\operatorname{det}\left(\operatorname{Tr}\left(x_{i} x_{j}\right)\right)_{i, j=1}^{n d^{2}} \mid\left(x_{1}, \ldots, x_{n d^{2}}\right) \in \Lambda^{n d^{2}}\right\} \\
\operatorname{disc}(\Lambda / \mathbb{Z}) \leq(n \sqrt{\ell})^{4 n}
\end{gathered}
$$

Let \mathcal{I} be an ideal of Λ. Then

$$
\lambda_{1}(\mathcal{I}) \leq\left(n d^{2}\right)^{1 / 2} N_{\mathcal{A} / \mathbb{Q}}(\mathcal{I})^{1 / n d^{2}} \operatorname{disc}(\Lambda / \mathbb{Z})^{1 / 2 n d^{2}}
$$

Imperial College

Thankyou for Listening! And Future Work

- Trapdoor basis of CNTRU lattice
- Higher index CDAs?

Imperial College

 London
References

[PMS21]: Pellet-Mary, Stehle. On the hardness of the NTRU problem. Asiacrypt '21.
[FPMS22]: Felderhoff, Pellet-Mary, Stehle. On Module Unique-SVP and NTRU. Asiacrypt '22.
[DW21]: Ducas, van Woerden. NTRU Fatigue: How Stretched is Overstretched? Asiacrypt '21.
[CG05]: Coglianese, Goi. MaTRU: A New NTRU-Based Cryptosystem. Indocrypt '05.
[CPSWX19]: Chuengsatiansup, Prest, Stehle, Wallet, Xagawa.
ModFalcon. Asia CCS '20.
[CKKS19]: Cheon, Kim, Kim, Son. A New Trapdoor over
Module-NTRU Lattice and its Application to ID-based Encryption.
Eprint archive 2019/1468.
[GMLV22]: Grover, M., Ling, Vehkalahti. Noncommutative Ring Learning With Errors From Cyclic Algebras. J. of Cryptology 35.
[SS11]: Stehle, Steinfeld. Making NTRU as Secure as Worst-Case
Problems over Ideal Lattices. Eurocrypt '11.

