NTWE: A Natural Combination of NTRU and LWE

Joel Gärtner
KTH Royal Institute of Technology

August 16, 2023

NTWE Problem

- Introduce NTWE problem as a natural combination of the NTRU and LWE problems

NTWE Problem

- Introduce NTWE problem as a natural combination of the NTRU and LWE problems
- Consider both the provable and concrete hardness of NTWE problem

NTWE Problem

- Introduce NTWE problem as a natural combination of the NTRU and LWE problems
- Consider both the provable and concrete hardness of NTWE problem
- Construct and parametrize a NTWE-based cryptosystem

Lattice-Based Cryptography

- Primary candidate for post-quantum cryptography

- Lattice-based KEM and signature algorithm to be standardized by NIST

Assumptions in Lattice-Based Cryptography

- Primary two building blocks are NTRU [HPS98] and LWE [Reg05] problems
- Interesting to investigate alternative hardness assumptions
- We introduce the NTWE problem as a new problem for lattice-based cryptography

Problem Statements

- Use ring $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ with integers n, q
- Typical parameters $q=3329, n=256$ and $k<5$

Module-LWE MLWE(k)

Distinguish between uniformly random
$\left(\overline{\boldsymbol{A}} \in R_{q}^{m \times k}, \overline{\boldsymbol{b}} \in R_{q}^{m}\right)$ and $(\overline{\boldsymbol{A}}, \overline{\boldsymbol{b}}=\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{s}}+\overline{\boldsymbol{e}})$ with uniformly random $\overline{\boldsymbol{A}}$ and small $\overline{\boldsymbol{s}} \in R_{q}^{k}, \overline{\boldsymbol{e}} \in R_{q}^{m}$

Problem Statements

- Use ring $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ with integers n, q
- Typical parameters $q=3329, n=256$ and $k<5$

Module-LWE MLWE(k)

Distinguish between uniformly random
$\left(\overline{\boldsymbol{A}} \in R_{q}^{m \times k}, \overline{\boldsymbol{b}} \in R_{q}^{m}\right)$ and $(\overline{\boldsymbol{A}}, \overline{\boldsymbol{b}}=\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{s}}+\overline{\boldsymbol{e}})$ with uniformly random $\overline{\boldsymbol{A}}$ and small $\overline{\boldsymbol{s}} \in R_{q}^{k}, \overline{\boldsymbol{e}} \in R_{q}^{m}$

NTRU

Distinguish between uniformly random $h \in R_{q}$ and $h=g f^{-1}$ for small $g, f \in R_{q}$

Problem Statements

- Use ring $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ with integers n, q
- Typical parameters $q=3329, n=256$ and $k<5$

Module-LWE MLWE(k)

Distinguish between uniformly random
$\left(\overline{\boldsymbol{A}} \in R_{q}^{m \times k}, \overline{\boldsymbol{b}} \in R_{q}^{m}\right)$ and $(\overline{\boldsymbol{A}}, \overline{\boldsymbol{b}}=\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{s}}+\overline{\boldsymbol{e}})$ with uniformly random $\overline{\boldsymbol{A}}$ and small $\overline{\boldsymbol{s}} \in R_{q}^{k}, \overline{\mathbf{e}} \in R_{q}^{m}$

Module NTRU MNTRU(k)

Distinguish between uniformly random $\overline{\boldsymbol{H}} \in R_{q}^{m \times k}$ and $\overline{\boldsymbol{H}}=\overline{\boldsymbol{G F}}^{-1}$ and small $\overline{\boldsymbol{G}} \in R_{q}^{m \times k}, \overline{\boldsymbol{F}} \in R_{q}^{k \times k}$

Problem Statements

- Use ring $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ with integers n, q
- Typical parameters $q=3329, n=256$ and $k<5$

Module-LWE MLWE(k)

Distinguish between uniformly random
$\left(\overline{\boldsymbol{A}} \in R_{q}^{m \times k}, \overline{\boldsymbol{b}} \in R_{q}^{m}\right)$ and $(\overline{\boldsymbol{A}}, \overline{\boldsymbol{b}}=\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{s}}+\overline{\boldsymbol{e}})$ with uniformly random $\overline{\boldsymbol{A}}$ and small $\overline{\boldsymbol{s}} \in R_{q}^{k}, \overline{\mathbf{e}} \in R_{q}^{m}$

Module NTRU MNTRU(k)

Distinguish between uniformly random $\overline{\boldsymbol{H}} \in R_{q}^{m \times k}$ and $\overline{\boldsymbol{H}}=\overline{\boldsymbol{G F}}^{-1}$ and small $\overline{\boldsymbol{G}} \in R_{q}^{m \times k}, \overline{\boldsymbol{F}} \in R_{q}^{k \times k}$

NTWE Problem NTWE(k)

Distinguish between uniformly random ($\overline{\boldsymbol{A}} \in R_{q}^{m \times k}, \overline{\boldsymbol{b}} \in R_{q}^{m}$) and $\left(\overline{\boldsymbol{A}}, \overline{\boldsymbol{b}}=(\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{s}}+\overline{\boldsymbol{e}}) f^{-1}\right)$ with uniformly random $\overline{\boldsymbol{A}}$, small $\overline{\boldsymbol{e}} \in R_{q}^{m}, \overline{\boldsymbol{s}} \in R_{q}^{k}$ and $f \in R_{q}$

Problem Hardness

Provable Hardness

- NTWE problem a natural combination of NTRU and LWE problems
- Can easily see that the NTWE problem is not easier than either of these problems

Problem Hardness

Provable Hardness

- NTWE problem a natural combination of NTRU and LWE problems
- Can easily see that the NTWE problem is not easier than either of these problems

Concrete Hardness

- NTWE problem naturally corresponds to a lattice problem
- The hardness of this lattice problem gives a concrete hardness estimate for the NTWE problem

Provable Relation to MLWE problem

- Given $\operatorname{MLWE}(k)$ instance $\overline{\boldsymbol{A}} \in \mathbb{R}_{q}^{m \times k}, \overline{\boldsymbol{b}} \in \mathbb{R}_{q}^{m}$
- Sample f from correct distribution and $\left(\overline{\boldsymbol{A}}, \overline{\boldsymbol{b}} \cdot f^{-1}\right)$ is an NTWE (k) instance
- Solving $\operatorname{NTWE}(k)$ instance gives solution to original MLWE (k) instance

Provable Relation to NTRU Problem

- Given NTRU instance with multiple samples $h_{i}=g_{i} f^{-1}$
- Sample \boldsymbol{A} uniformly at random and produce NTWE instance with

$$
\boldsymbol{b}=\boldsymbol{A} \boldsymbol{h}_{[1, \ldots, k]}+\boldsymbol{h}_{[k+1, \ldots k+m]}\left(\boldsymbol{A} \boldsymbol{g}_{[1, \ldots, k]}+\boldsymbol{g}_{[k+1, \ldots k+m]}\right) \cdot f^{-1}
$$

- Solving NTWE instance implies solution to original NTRU instance

Reduction From More Structured NTWE to MNTRU Problem

- More structured variant of $\operatorname{NTWE}(k)$ is at least as hard as $\operatorname{MNTRU}(k+1)$
- Additional structure might make the NTWE problem harder
- More natural to assume that less structure corresponds to harder problems

Concrete Hardness of NTWE Problem

- NTWE corresponds to problem of finding unusually short vector in a lattice

NTWE(k) Lattice

Lattice given by $\boldsymbol{A} \in \mathbb{Z}_{q}^{m n \times k n}, \boldsymbol{B} \in \mathbb{Z}_{q}^{m n \times n}$

Concrete Hardness of NTWE Problem

- NTWE corresponds to problem of finding unusually short vector in a lattice
- NTWE(k) with $\boldsymbol{H}=\boldsymbol{A} \| \boldsymbol{B}$ gives same type of lattice as MNTRU $(k+1)$

NTWE(k) Lattice

Lattice given by $\boldsymbol{A} \in \mathbb{Z}_{q}^{m n \times k n}, \boldsymbol{B} \in \mathbb{Z}_{q}^{m n \times n}$
$\operatorname{MNTRU}(k+1)$ Lattice
Lattice given by $\boldsymbol{H} \in \mathbb{Z}_{q}^{m n \times(k+1) n}$

Concrete Hardness of NTWE Problem

- NTWE corresponds to problem of finding unusually short vector in a lattice
- NTWE(k) with $\boldsymbol{H}=\boldsymbol{A} \| \boldsymbol{B}$ gives same type of lattice as MNTRU $(k+1)$
- NTWE (k) lattice very similar to $\operatorname{MLWE}(k+1)$ lattice

NTWE(k) Lattice

Lattice given by $\boldsymbol{A} \in \mathbb{Z}_{q}^{m n \times k n}, \boldsymbol{B} \in \mathbb{Z}_{q}^{m n \times n}$

$\operatorname{MNTRU}(k+1)$ Lattice

Lattice given by $\boldsymbol{H} \in \mathbb{Z}_{q}^{m n \times(k+1) n}$

$$
\text { MLWE }(k+1) \text { Lattice }
$$

Lattice given by $\boldsymbol{A} \in \mathbb{Z}_{q}^{m n \times(k+1) n}, \boldsymbol{b} \in \mathbb{Z}_{q}^{m n \times 1}$

Concrete Hardness of NTWE Problem

- NTWE corresponds to problem of finding unusually short vector in a lattice
- NTWE(k) with $\boldsymbol{H}=\boldsymbol{A} \| \boldsymbol{B}$ gives same type of lattice as MNTRU $(k+1)$
- NTWE (k) lattice very similar to $\operatorname{MLWE}(k+1)$ lattice
- Concrete hardness of these types of lattice problems is well studied [CN11, Che13, APS15, ACD ${ }^{+}$18]

NTWE(k) Lattice

Lattice given by $\boldsymbol{A} \in \mathbb{Z}_{q}^{m n \times k n}, \boldsymbol{B} \in \mathbb{Z}_{q}^{m n \times n}$

$\operatorname{MNTRU}(k+1)$ Lattice

Lattice given by $\boldsymbol{H} \in \mathbb{Z}_{q}^{m n \times(k+1) n}$

MLWE $(k+1)$ Lattice

Lattice given by $\boldsymbol{A} \in \mathbb{Z}_{q}^{m n \times(k+1) n}, \boldsymbol{b} \in \mathbb{Z}_{q}^{m n \times 1}$

NTWE-Based Cryptosystem

Cryptosystem Construction

- Use public matrix $\overline{\boldsymbol{A}} \in R_{q}^{k \times(k-1)}$
- Ciphertext is k samples from $\operatorname{MLWE}(k)$ instance
- Decryption correct as products of $\overline{\boldsymbol{s}}, \overline{\boldsymbol{e}}, f, \overline{\boldsymbol{s}}^{\prime}, e^{\prime}, \overline{\boldsymbol{e}}^{\prime \prime}$ small

Comparable MLWE-Based Cryptosystem

$$
\begin{aligned}
& \qquad\left|\begin{array}{c}
\text { Alice } \\
\hline \\
\left.c_{1}=\overline{\boldsymbol{s}}^{\prime} \cdot \overline{\boldsymbol{b}}=\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{s}}+\overline{\boldsymbol{e}}\right) \\
\overline{\boldsymbol{c}}_{2}=\overline{\boldsymbol{s}}^{\prime} \cdot \overline{\boldsymbol{A}}+\overline{\boldsymbol{e}}^{\prime \prime}
\end{array}\right| \\
& M=\left\lfloor 2\left(c_{1}-\overline{\boldsymbol{c}}_{2} \cdot \overline{\boldsymbol{s}}\right) / q\right\rceil
\end{aligned}
$$

Cryptosystem Construction

- Public matrix $\overline{\boldsymbol{A}} \in R_{q}^{k \times k}$
- Ciphertext is $k+1$ samples from MLWE (k) instance
- Decryption correct as products of $\overline{\boldsymbol{s}}, \overline{\boldsymbol{e}}, \overline{\boldsymbol{s}}^{\prime}, \overline{\boldsymbol{e}}^{\prime \prime}$ and e^{\prime} small

Parametrizations of NTWE-Based Cryptosystem

- Parametrizations with same ring $R=\mathbb{Z}[X] /\left(X^{256}+1\right)$ and modulos $q=3329$ as in Kyber [SAB ${ }^{+}$22]
- Similar distributions for $\overline{\boldsymbol{s}}$ and $\overline{\boldsymbol{e}}$ as in Kyber
- More efficient than Kyber as requires fewer operations of equivalent cost

Version	NTWE-768	Kyber-768	NTWE-1024	Kyber-1024
Core SVP	182	183	256	256
Dimension of $\overline{\boldsymbol{A}}$	3×2	3×3	4×3	4×4
PK size (bytes)	1184	1184	1568	1568
CT size (bytes)	1152	1088	1536	1568
δ	2^{-182}	2^{-164}	2^{-153}	2^{-174}

Ciphertext Compression

MLWE ciphertext

Without compression

- MLWE-based cryptosystems use ciphertext compression to allow for smaller ciphertexts
- Ciphertext compression not suitable for all applications
- NTWE-based cryptosystem without ciphertext compression allows more efficient encryption and decryption

c_{1}	c_{2}

With compression

NTWE ciphertext

c_{1}	C_{2}

Efficiency of Operations

Alice

- Multiplication, inversion and addition in R_{q} efficient with NTT
- Multiplication and inversion in R_{2} during decryption less efficient as not performed with
- Sampling f such that it is trivial in R_{2} ensures no operations in R_{2} are required

$$
\begin{gathered}
M=\left\lfloor 2\left(c_{1} f-\overline{\boldsymbol{c}}_{2} \cdot \overline{\mathbf{s}}\right) / q\right\rceil f_{2}^{-1} \\
M=\left\lfloor 2\left(c_{1}-\overline{\boldsymbol{c}}_{2} \cdot \overline{\boldsymbol{s}}\right) / q\right\rceil
\end{gathered}
$$

Efficiency of Operations

- Multiplication, inversion and addition in R_{q} efficient with NTT
- Multiplication and inversion in R_{2} during decryption less efficient as not performed with
- Sampling f such that it is trivial in R_{2} ensures no operations in R_{2} are required

Alice

$$
\begin{gathered}
\frac{\left(\overline{\boldsymbol{A}}, \overline{\boldsymbol{b}}=(\overline{\boldsymbol{A}} \cdot \overline{\mathbf{s}}+\overline{\boldsymbol{e}}) f^{-1}\right)}{(\overline{\boldsymbol{A}}, \overline{\boldsymbol{b}}=\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{s}}+\overline{\boldsymbol{e}})} \\
\frac{c_{1}=\overline{\boldsymbol{s}}^{\prime} \cdot \overline{\boldsymbol{b}}+e^{\prime}+\lfloor M q / 2\rceil}{\overline{\boldsymbol{c}}_{2}=\overline{\boldsymbol{s}}^{\prime} \cdot \overline{\boldsymbol{A}}+\overline{\boldsymbol{e}}^{\prime \prime}}
\end{gathered}
$$

$$
M=\left\lfloor 2\left(c_{1} f-\overline{\boldsymbol{c}}_{2} \cdot \overline{\boldsymbol{s}}\right) / q\right\rceil
$$

$$
M=\left\lfloor 2\left(c_{1}-\overline{\boldsymbol{c}}_{2} \cdot \overline{\mathbf{s}}\right) / q\right\rceil
$$

Conclusion

- Introduced the NTWE problem with provable relations to NTRU and LWE problems

Conclusion

- Introduced the NTWE problem with provable relations to NTRU and LWE problems
- Estimated the concrete hardness of the NTWE problem based on the hardness of the natural corresponding lattice problem

Conclusion

- Introduced the NTWE problem with provable relations to NTRU and LWE problems
- Estimated the concrete hardness of the NTWE problem based on the hardness of the natural corresponding lattice problem
- Constructed a NTWE-based cryptosystem with performance competitive with highly efficient lattice-based cryptosystems

Questions?

Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel Player, Eamonn W. Postlethwaite, Fernando Virdia, and Thomas Wunderer.
Estimate all the LWE, NTRU schemes!
pages 351-367, 2018.
目 Martin R. Albrecht, Rachel Player, and Sam Scott.
On the concrete hardness of learning with errors.
Cryptology ePrint Archive, Report 2015/046, 2015.
https://eprint.iacr.org/2015/046.
T Yuanmi Chen.
Réduction de réseau et sécurité concrète du chiffrement complètement homomorphe. PhD thesis, Université Paris Diderot, 2013.
2013PA077242.
圖 Yuanmi Chen and Phong Q. Nguyen.
BKZ 2.0: Better lattice security estimates.
pages 1-20, 2011.
Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman.

NTRU: A ring-based public key cryptosystem.
In Third Algorithmic Number Theory Symposium (ANTS), volume 1423, pages 267-288, June 1998.

固 Oded Regev.
On lattices, learning with errors, random linear codes, and cryptography. pages 84-93, 2005.

Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding.

CRYSTALS-KYBER.

Technical report, National Institute of Standards and Technology, 2022.
available at https://csrc.nist.gov/Projects/post-quantum-cryptography/ selected-algorithms-2022.

