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Introduction Linear-queries Algorithm Trade-off Conclusion

Abelian hidden shift & DCP

Abelian hidden shift
Given an abelian group (G ,+), two functions f , g : G → S such that:
∃s, f (x) = g(x + s), find s.

=⇒ underlies the security of some post-quantum schemes (e.g. CSIDH)
G = ZN in this talk.
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Abelian hidden shift & DCP (ctd.)

Quantum 101:
operate on states

∑
x αx |x〉 with complex amplitudes αx

αx is not observable, measuring returns x with probability |αx |2

Create a superposition:

1√
2
(|0〉+ |1〉) 1√

N

∑
x∈ZN

|x〉

Apply f if 0, g if 1:

1√
2N
|0〉
∑
x

|x〉 |f (x)〉+ 1√
2N
|1〉
∑
x

|x〉 |g(x)〉

Measure the output: get 1√
2
(|0〉 |x〉+ |1〉 |x + s〉)

DCP: Find s from such states (with random x).
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Phase vectors

Let ωN = exp(2iπ/N)

1√
2
(|x , 0〉+ |x + s, 1〉)

QFTN−−−→ 1√
2N

∑
k∈ZN

ωkx
N |k〉

(
|0〉+ ωks

N |1〉
)

Measure 1st register−−−−−−−−−−−−→ 1√
2
|k〉
(
|0〉+ ωks

N |1〉
)
=: |ψk〉

From now on, combine random phase vectors |ψk〉 into more
useful ones (some constraint on k)
Ex. if N is even, k = N/2 =⇒ |ψk〉 = 1√

2
(|0〉 ± |1〉), gives one bit

of s
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Quantum algorithms for abelian hidden shift
(n = log2N)

Ettinger-Høyer: O (n) queries and O (2n) time

Kuperberg (2003): 2O(
√

n) queries and time

Regev: 2O(
√

n log n) queries and time

Kuperberg (2011): O
(
2
√

2n
)
queries and time

. . . and many trade-offs to attack CSIDH instances, especially with lower
query complexity.

Time and Query Complexity Tradeoffs for the DCP 5/18



Introduction Linear-queries Algorithm Trade-off Conclusion

This paper

Improved algorithm with linear query complexity
Interpolation between this algorithm and Kuperberg’s (2011)

(Limited) impact on CSIDH

Reducing the amount of queries is important, but not enough: we also
need to keep the time small.
=⇒ improving the attacks on CSIDH would require better quantum

algorithms for subset-sum
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Linear-queries Algorithm

Time and Query Complexity Tradeoffs for the DCP 7/18



Introduction Linear-queries Algorithm Trade-off Conclusion

Regev’s combination routine

Idea:
combine many |ψki 〉 (k = (k1, . . . , km))
create a new |ψk〉 with a condition on k (such that B|k)

1: Write:
|ψk1〉 |ψk2〉 · · · |ψkm〉 =

1√
2m

∑
b∈{0,1}m

ωsb·k
N |b〉

2: Compute k · b mod B and measure the value z
3: Compute the vectors b such that b · k = z
4: If there are two vectors, the state is:

1√
2

(
ωsb1·k

N |b1〉+ ωsb2·k
N |b2〉

)
'︸︷︷︸

global phase

1√
2

(
|b1〉+ω

s

New label k︷ ︸︸ ︷
(b2 − b1) · k

N |b2〉
)

Regev, A subexponential time algorithm for the dihedral hidden subgroup problem
with polynomial space (2004), arXiv:quant-ph/0406151
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Consequences

The difficult step: computing b1 and b2

=⇒ (random) subset-sum problem

given k = (k1, . . . , km), given z , find b ∈ {0, 1}m s.t. b · k = z mod B

In Regev’s algorithm, we use multiple levels with m ' log2 B '
√

n
=⇒ '

√
n
√

n operations & queries

We can also combine ' n phase vectors to recover one bit of s, and
repeat

=⇒ ' n2 queries (good for attacking CSIDH-512)

Regev, A subexponential time algorithm for the dihedral hidden subgroup problem
with polynomial space (2004), arXiv:quant-ph/0406151
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New algorithm

Reduce the queries to O (n) but keep the time � 2n: recover the full
secret in one pass.

1: As before, compute k · b mod N

1√
2m

∑
b∈{0,1}m

ωsb·k
N |b〉 |k · b〉

2: Solve the subset-sum problem to compute b from k · b
3: Remove b

1√
2m

∑
b∈{0,1}m

ωsb·k
N |k · b〉 ' 1√

N

∑
x

ωsx
N |x〉

4: This is the QFT of |s〉, so apply the inverse QFT and measure s
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The quantum subset-sum solver

What we mean by “quantum” here:

A quantum algorithm QSS which maps (k being fixed):

|v〉 |b〉 7→ |v〉 |b⊕ QSS(v)〉

Failures in QSS and cases with more than one solution yield some
manageable errors.
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Implementing QSS

Solving a subset-sum instance in superposition, with poly(n) qubits:

Basic: Grover search in time Õ
(
2n/2

)
Using quantum-accessible memory: reuse the procedure of
[BBSS20], time Õ

(
20.2356n

)
Using classical memory: reuse the algorithm of [HM20]: time
Õ
(
20.428n

)
and classical space Õ

(
20.285n

)
=⇒ improvement: new algorithm in quantum time Õ

(
20.4165n

)
and

classical space Õ
(
20.2334n

)

Bonnetain, Bricout, S., Shen, “Improved classical and quantum algorithms for
subset-sum”, ASIACRYPT 2020

Helm, May, “The power of few qubits and collisions - subset sum below Grover’s
bound”, PQCrypto 2020
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Trade-off
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Trade-off by pre-processing

If the labels ki could have a specific form, the subset-sum problem
could become easier:



1 2 · · · m − t m − t + 1 · · · n
k1 1 • · · · • • · · · •

k2 0 1
. . . • • · · · •

...
...

...
. . . . . .

... · · · •
km−t 0 0 · · · 1 • · · · •
km−t+1 0 0 · · · 0 • · · · •
...

...
...

...
... · · · •

km 0 0 · · · 0 • · · · •
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Corner case: no preprocessing


1 2 · · · n

k1 • · · · •
k2 • · · · •
...

...
. . .

...
km • · · · •


No constraints on the labels, the subset-sum problem is hard
This is our linear-queries algorithm
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Corner case: complete preprocessing


1 2 · · · n

k1 1 • · · · •

k2 0 1
. . . •

...
...

...
. . .

...
kn 0 0 · · · 1


(i − 1)-bit constraint on each label ki , the subset-sum problem is
trivial
This corresponds to Kuperberg 2011: this sequence of labels is
constructed in time ∑

i

2
√

2i = O
(√

n2
√

2n
)
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Conclusion
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Conclusion

New linear-queries algorithm for DCP
New natural trade-off for sieving algorithms for DCP
Improvement on the Helm-May algorithm to run Subset-sum in
superposition

Unfortunately, quantum subset-sum algorithms are not that fast.
=⇒ need to improve them to make the linear-queries algorithm
competitive for small CSIDH instances.

Thank you!
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