Time and Query Complexity Tradeoffs for the Dihedral Coset Problem

Maxime Remaud ${ }^{1}$, André Schrottenloher ${ }^{2}$, Jean-Pierre Tillich ${ }^{3}$

${ }^{1}$ Inria and Eviden Quantum Lab
${ }^{2}$ Univ Rennes, Inria, CNRS, IRISA
${ }^{3}$ Inria

Abelian hidden shift \& DCP

Abelian hidden shift

Given an abelian group $(G,+)$, two functions $f, g: G \rightarrow S$ such that: $\exists \mathrm{s}, f(x)=g(x+s)$, find s .
\Longrightarrow underlies the security of some post-quantum schemes (e.g. CSIDH) $G=\mathbb{Z}_{\mathrm{N}}$ in this talk.

Abelian hidden shift \& DCP (ctd.)

Quantum 101:

- operate on states $\sum_{x} \alpha_{x}|x\rangle$ with complex amplitudes α_{x}
- α_{x} is not observable, measuring returns x with probability $\left|\alpha_{x}\right|^{2}$
- Create a superposition:

$$
\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \frac{1}{\sqrt{\mathbf{N}}} \sum_{x \in \mathbb{Z}_{N}}|x\rangle
$$

- Apply f if $0, g$ if 1 :

$$
\frac{1}{\sqrt{2 \mathbf{N}}}|0\rangle \sum_{x}|x\rangle|f(x)\rangle+\frac{1}{\sqrt{2 \mathbf{N}}}|1\rangle \sum_{x}|x\rangle|g(x)\rangle
$$

- Measure the output: get $\frac{1}{\sqrt{2}}(|0\rangle|x\rangle+|1\rangle|x+s\rangle)$

DCP: Find s from such states (with random x).

Phase vectors

Let $\omega_{N}=\exp (2 i \pi / N)$

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(|x, 0\rangle+|x+\mathrm{s}, 1\rangle) \\
& \xrightarrow{Q F T_{N}} \frac{1}{\sqrt{2 \mathrm{~N}}} \sum_{k \in \mathbb{Z}_{N}} \omega_{\mathrm{N}}^{k x}|k\rangle\left(|0\rangle+\omega_{\mathrm{N}}^{k s}|1\rangle\right) \\
& \xrightarrow{\text { Measure 1st register }} \frac{1}{\sqrt{2}}|k\rangle\left(|0\rangle+\omega_{\mathrm{N}}^{k \mathrm{~s}}|1\rangle\right)=:\left|\psi_{k}\right\rangle
\end{aligned}
$$

- From now on, combine random phase vectors $\left|\psi_{k}\right\rangle$ into more useful ones (some constraint on k)
- Ex. if \mathbf{N} is even, $k=\mathbf{N} / 2 \Longrightarrow\left|\psi_{k}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|1\rangle)$, gives one bit of s

Quantum algorithms for abelian hidden shift ($n=\log _{2} N$)

- Ettinger-Høyer: $\mathcal{O}(\mathbf{n})$ queries and $\mathcal{O}\left(2^{\mathbf{n}}\right)$ time
- Kuperberg (2003): $2^{\mathcal{O}(\sqrt{n})}$ queries and time
- Regev: $2^{\mathcal{O}(\sqrt{n \log n})}$ queries and time
- Kuperberg (2011): $\mathcal{O}\left(2^{\sqrt{2 n}}\right)$ queries and time
... and many trade-offs to attack CSIDH instances, especially with lower query complexity.

This paper

- Improved algorithm with linear query complexity
- Interpolation between this algorithm and Kuperberg's (2011)

(Limited) impact on CSIDH

Reducing the amount of queries is important, but not enough: we also need to keep the time small.
\Longrightarrow improving the attacks on CSIDH would require better quantum algorithms for subset-sum

Linear-queries Algorithm

Regev's combination routine

Idea:

- combine many $\left|\psi_{k_{i}}\right\rangle\left(\mathbf{k}=\left(k_{1}, \ldots, k_{m}\right)\right)$
- create a new $\left|\psi_{k}\right\rangle$ with a condition on k (such that $B \mid k$)

1: Write:

$$
\left|\psi_{k_{1}}\right\rangle\left|\psi_{k_{2}}\right\rangle \cdots\left|\psi_{k_{m}}\right\rangle=\frac{1}{\sqrt{2^{m}}} \sum_{\mathbf{b} \in\{0,1\}^{m}} \omega_{N}^{\text {sb.k }}|\mathbf{b}\rangle
$$

2: Compute $\mathbf{k} \cdot \mathbf{b} \bmod B$ and measure the value z
3: Compute the vectors \mathbf{b} such that $\mathbf{b} \cdot \mathbf{k}=z$
4: If there are two vectors, the state is:

$$
\frac{1}{\sqrt{2}}\left(\omega_{\mathrm{N}}^{\mathrm{s}_{1} \cdot \mathbf{k}}\left|\mathbf{b}_{1}\right\rangle+\omega_{\mathrm{N}}^{\mathrm{s}} \mathbf{b}_{2} \cdot \mathbf{k}\left|\mathbf{b}_{2}\right\rangle\right) \underbrace{\simeq}_{\text {global phase }} \frac{1}{\sqrt{2}}(\left|\mathbf{b}_{1}\right\rangle+\omega_{\mathrm{N}}^{\mathrm{s}} \overbrace{\left(\mathbf{b}_{2}-\mathbf{b}_{1}\right) \cdot \mathbf{k}}^{\text {New label } k}\left|\mathbf{b}_{2}\right\rangle)
$$

Regev, A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space (2004), arXiv:quant-ph/0406151

Consequences

- The difficult step: computing \mathbf{b}_{1} and \mathbf{b}_{2}
\Longrightarrow (random) subset-sum problem

$$
\text { given } \mathbf{k}=\left(k_{1}, \ldots, k_{m}\right) \text {, given } z \text {, find } \mathbf{b} \in\{0,1\}^{m} \text { s.t. } \mathbf{b} \cdot \mathbf{k}=z \bmod B
$$

- In Regev's algorithm, we use multiple levels with $m \simeq \log _{2} B \simeq \sqrt{\mathbf{n}}$ $\Longrightarrow \simeq \sqrt{n}^{\sqrt{n}}$ operations \& queries
- We can also combine $\simeq \mathbf{n}$ phase vectors to recover one bit of s , and repeat
$\Longrightarrow \simeq \mathbf{n}^{2}$ queries (good for attacking CSIDH-512)

Regev, A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space (2004), arXiv:quant-ph/0406151

New algorithm

Reduce the queries to $\mathcal{O}(\mathbf{n})$ but keep the time $\ll 2^{\text {n }}$: recover the full secret in one pass.

1: As before, compute $\mathbf{k} \cdot \mathbf{b} \bmod \mathbf{N}$

$$
\frac{1}{\sqrt{2^{m}}} \sum_{\mathbf{b} \in\{0,1\}^{m}} \omega_{N}^{\text {sb } \cdot \mathbf{k}}|\mathbf{b}\rangle|\mathbf{k} \cdot \mathbf{b}\rangle
$$

2: Solve the subset-sum problem to compute \mathbf{b} from $\mathbf{k} \cdot \mathbf{b}$
3: Remove b

$$
\frac{1}{\sqrt{2^{m}}} \sum_{\mathbf{b} \in\{0,1\}^{m}} \omega_{\mathrm{N}}^{\text {sb/k }}|\mathbf{k} \cdot \mathbf{b}\rangle \simeq \frac{1}{\sqrt{\mathbf{N}}} \sum_{x} \omega_{N}^{\text {sx }}|x\rangle
$$

4: This is the QFT of $|\mathrm{s}\rangle$, so apply the inverse QFT and measure s

The quantum subset-sum solver

What we mean by "quantum" here:
A quantum algorithm QSS which maps (\mathbf{k} being fixed):

$$
|v\rangle|\mathbf{b}\rangle \mapsto|v\rangle|\mathbf{b} \oplus Q S S(v)\rangle
$$

Failures in QSS and cases with more than one solution yield some manageable errors.

Implementing QSS

Solving a subset-sum instance in superposition, with poly(n) qubits:

- Basic: Grover search in time $\widetilde{\mathcal{O}}\left(2^{n / 2}\right)$
- Using quantum-accessible memory: reuse the procedure of [BBSS20], time $\widetilde{\mathcal{O}}\left(2^{0.2356 n}\right)$
- Using classical memory: reuse the algorithm of [HM20]: time $\widetilde{\mathcal{O}}\left(2^{0.428 n}\right)$ and classical space $\widetilde{\mathcal{O}}\left(2^{0.285 n}\right)$
\Longrightarrow improvement: new algorithm in quantum time $\widetilde{\mathcal{O}}\left(2^{0.4165 n}\right)$ and classical space $\widetilde{\mathcal{O}}\left(2^{0.2334 n}\right)$

[^0]
Trade-off

Trade-off by pre-processing

If the labels k_{i} could have a specific form, the subset-sum problem could become easier:

Corner case: no preprocessing

- No constraints on the labels, the subset-sum problem is hard
- This is our linear-queries algorithm

Corner case: complete preprocessing

$$
\begin{aligned}
& \\
& k_{1} \\
& k_{2} \\
& \vdots \\
& k_{n}
\end{aligned}\left(\begin{array}{cccc}
1 & 2 & \cdots & \mathbf{n} \\
1 & \bullet & \cdots & \bullet \\
0 & 1 & \ddots & \bullet \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

- ($i-1$)-bit constraint on each label k_{i}, the subset-sum problem is trivial
- This corresponds to Kuperberg 2011: this sequence of labels is constructed in time

$$
\sum_{i} 2^{\sqrt{2 i}}=\mathcal{O}\left(\sqrt{\mathbf{n}} 2^{\sqrt{2 n}}\right)
$$

Conclusion

Conclusion

- New linear-queries algorithm for DCP
- New natural trade-off for sieving algorithms for DCP
- Improvement on the Helm-May algorithm to run Subset-sum in superposition

Unfortunately, quantum subset-sum algorithms are not that fast. \Longrightarrow need to improve them to make the linear-queries algorithm competitive for small CSIDH instances.

Thank you!

[^0]: Bonnetain, Bricout, S., Shen, "Improved classical and quantum algorithms for subset-sum", ASIACRYPT 2020Helm, May, "The power of few qubits and collisions - subset sum below Grover's bound", PQCrypto 2020

