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Summary

Motivation: Securing cellular networks against quantum attacks.

Cellular networks base large chunks on secret-key cryptography, with an unexplored attack
surface for quantum computers.

Recent works present quantum cryptanalysis of symmetric cryptography that provide a
speedup greater than the trivial quadratic Grover’s algorithm speedup

Research Question Do quantum cryptanaltic attacks extent to the secret-key
cryptography used in cellular networks?
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𝐾𝑖

𝑋𝑀𝐴𝐶 = 𝒇𝟏(𝐾𝑖, 𝑆𝑄𝑁, 𝑅𝐴𝑁𝐷)
Verify MAC = XMAC
𝑅𝐸𝑆 = 𝒇𝟐 𝐾𝑖, 𝑅𝐴𝑁𝐷
[… ]

𝑀𝐴𝐶 = 𝒇𝟏(𝐾𝑖, 𝑆𝑄𝑁,𝑅𝐴𝑁𝐷)
𝑋𝑅𝐸𝑆 = 𝒇𝟐 𝐾𝑖, 𝑅𝐴𝑁𝐷
…

1. Connection Request (Containing Identity)

2. Challenge

𝑅𝐴𝑁𝐷,𝑀𝐴𝐶,𝐴𝑈𝑇𝑁 = 𝑆𝑄𝑁⊕𝐴𝐾

3. Response

𝑅𝐸𝑆

𝐾𝑖

Verify XRES = RES

Authentication and key agreement 
is based on secret-key challenge 
response protocol. 

Encrypt  subsequent communication using keys derived from 𝐟𝟑 and 𝐟𝟒

Subscriber-side security of cellular networks is rooted in the AKA protocol



Authentication and key derivation is based on a secret-key challenge-response protocol,
leveraging functions f1,..,f5.

Most common instantiation of f 1, .., f 5: Milenage algorithm set: A set of secret key
algorithms that base their security on AES.

¬
Research question: Does Milenage withstand quantum cryptanalysis?

We analyze Milenage in different dimensions

Attacker Model Quantum vs. classical oracle access, (quantum) related key access

Attacker Goals: Existential forgery, (partial) key recovery

Leveraging existing quantum cryptanalysis work.
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The Milenage function resembles as CBC-MAC or FX-construction
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The f 1 MAC resembles a CBC-MAC

0 EK EKEK EK

m1 m2 . . .

Figure: A CBC-MAC construction.

0 EK EKEK

m1 ⊕ OPc

rot(m2 ⊕ OPc , r1)⊕ c1
OPc

Figure: The Milenage f 1 construction.
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The f 2 function resembles an FX-construction

m EK EK

k1 k1 k1

Figure: An iterated FX cipher.

m EK EK

OPc c2 ⊕ OPc OPc

Figure: The f 2 function, close to an iterated FX cipher.
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¬
The Milenage functions follows the structure of well-studied primitives. Do the
research results extend to Milenage as well?
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Quantum Cryptanalysis

Quantum Computers provide powerful attack primitive that could lead to faster attacks
against symmetric cryptography.

Trivial attack: Grover’s search, which provides quadratic speedup (albeit being hard to
parallelize).

Recent works have shown how quantum period finding can be used to go beyond that
speedup.
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Quantum Cryptanalysis: Speeding up Bruteforce With Grover’s Algorithm

In 1996, Grover described an algorithm that achieves a quadratic speedup when
performing an unstructured, brute-force search on a quantum computer

Can brute-force an n-bit key in O(2n/2)

,
Grover’s algorithm was for long only threat considered to symmetric cryptography
in cellular networks. But recent results have shown that symmetric ciphers can
exhibit structures that can be exploited by quantum computers in a more efficient
manner.
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Simon’s Algorithm

ð
Simon’s algorithm: Given a periodic function, i.e. a function f where f (x) = f (y)
iff x ⊕ y = s, then can find period s in polynomial time with O(n) quantum
queries to f .

[Kaplan et al., 2016]: We can still apply Simon’s algorithm even if f has some number of
unwanted collisions (i.e. f (x) = f (y), but x ⊕ y 6= s)
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Attacker models in quantum cryptanalysis for symmetric ciphers

Most attacks rely on Simon’s algorithm – The attacks distinguish

Q1 Model ”Classical” access to function f , no superposition queries – classical chosen
plaintext attack
⇒ Simon’s algorithm not directly applicable.

Q2 Model Quantum access to function – quantum chosen plaintext attack∑
x ,y

λx ,y |x〉 |y〉 →
∑
x ,y

λx ,y |x〉 |y ⊕ f (x)〉

⇒ Can directly run Simon’s algorithm to find period s.

ð
The Q2 Model is (mostly) not practical, but encompasses all attacks possible in the
Q1 Model. Thus Q2 secure implies security in all other models – which motivates
this model from a security perspective.
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Using Quantum Period Finding To Attack Symmetric Cryptography

A series of works established quantum attacks against symmetric cryptography using quantum
period finding.

[Kuwakado and Morii, 2012]: Quantum computers can break the classically secure
Even-Mansour cipher in the Q2 model.

[Kaplan et al., 2016]: CBC-MACs (and other constructions) can be broken in the Q2
model.

Series of works: Speed up the attacks [Leander and May, 2017] and extend their reach to
schemes where only classical access is given (Q1 model): [Bonnetain et al., 2019] and
[Bonnetain et al., 2022].
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Example Attack With Simon’s Algorithm — The Even-Mansour Cipher

x P y

k0 k1

Example quantum attack: Even-Mansour Cipher [Kuwakado and Morii, 2012]

Ek1,k2(x) = P(x ⊕ k0)⊕ k1, where P is random, but public permutation

Can be broken with Simon’s algorithm

Attack: Construct function f such that

f (x) = Ek1,k2(x)⊕ P(x) = P(x ⊕ k1)⊕ P(x)⊕ k2

Clearly, this has period k1, i.e., f (x) = f (x ⊕ k1)
⇒ Can use Simon’s algorithm to identify k1 in polynomial time!
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The offline Simon’s algorithm

In the Q1 setting, we can also use offline Simon’s algorithm [Bonnetain et al., 2019]

The offline Simon algorithm

Given

classical oracle access to a function g : {0, 1}m → {0, 1}l

and quantum oracle access to a function fk{0, 1}n → {0, 1}l for a guess k.

such that fk ⊕ g has a period.

Output: The offline Simon’s algorithm can find k such that fk ⊕g is periodic in O(2m +
2n/2) time, using 2m classical queries.
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Offline Simon’s Algorithm: Intuition

The offline Simon’s algorithm [Bonnetain et al., 2019]:

1. Query g on all possible inputs to prepare a sample state
∑

x∈{0,1}n |x〉 |g(x)〉
2. Use Grover to guess a key k such that fk ⊕ g might be periodic

3. In Grover: Use Simon’s algorithm with prepared sample state to verify whether guess k
led to a periodic function fk ⊕ g

⇒ With offline Simon’s algorithm, can attack FX -construction FXk1,k2,k(x) = Ek(x ⊕ k1)⊕ k2

in O(2
m+n

3 ) time.
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¬
The Milenage functions follows the structure of well-studied primitives. Do the
research results extend to Milenage as well?

ð
Yes! This presentation covers two attacks on f 1 and f 2 respectively, details in the
paper.
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Attacking Milenage: Existential Forgery in the Q2 Model

0 EK EKEK

m1 ⊕ OPc

rot(m2 ⊕ OPc , r1)⊕ c1
OPc

Figure: The Milenage f 1 construction.

¬
This is close to a CBC-MAC: Is the rotation sufficient to prevent the attack by
[Kaplan et al., 2016]?

Answer: Can abuse the linearity of rotation and the fact that r1, c1 are public to break the
scheme.
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0 EK EKEK

m1 ⊕ OPc

rot(m2 ⊕ OPc , r1)⊕ c1
OPc

Figure: The Milenage f 1 construction.

Attack (following [Kaplan et al., 2016]):

1. Pick two arbitrary bit-strings α0, α1 ∈ { 0, 1 }|M| with α0 6= α1.
2. Define function f ′ : {0, 1} × {0, 1}|M| → {0, 1}|M| by

f ′(b,m2)

def
= f 1K ,OPc (αb,m2)

= EK [EK [αb ⊕ OPC ]⊕ rotr1(m2)⊕ rotr1(OPc)⊕ c1]⊕ OPc .

3. This function has period (1, rot−1
r1 (α∗0 ⊕ α∗1)), sufficient to perform existential forgery.

Result: In the Q2 model, we can use Simon’s algorithm for an existential forgery attack on f 1
in quantum polynomial time.
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Key Recovery Using Quantum Slide Attack

m EK EK

OPc c2 ⊕ OPc OPc

Figure: The f 2 function, close to an iterated FX cipher.

Define f 2′(m) = f 2(m ⊕ c2)⊕ c2

m EK EK

c2 ⊕ OPc c2 ⊕ OPc c2 ⊕ OPc

Figure: The f 2′ function, which now resembles an iterated FX cipher.
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Key Recovery Using Quantum Slide Attack

Slide Attack

Can now apply a quantum slide attack described by [Bonnetain et al., 2019] to achieve
key recovery
To see why, note slide property: f 2′(EK (x ⊕ OP∗c ))⊕ (x ⊕ OP∗c ) = EK (f 2′(x))⊕ x
⇒ Can now reformulate slide property as a period function and apply (offline) Simon’s
algorithm!

Result: Key recovery in Õ
(
|M| · TQAES) · 2

|K |
2

)
time with O(2|M|) classical queries, where |M|

is the challenge length and |K | is the key length.

In post-quantum configuration, with |OPc | = 128, |K | = 256:
Quantum Slide Attack Requires c · (2128 + 2128 · TQAES) operations
Grover’s attack Requires c · (2384/2) · TQAES = c · 2192 · TQAES operations.
Have achieved a speedup even in the Q1 model.
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Results Summary

Attack Model Classical Queries Superposition Queries Circuit Depth Complexity

Grover’s attack for key
recovery, OP known

Q1 O(1) 0 O
(

2|K|/2 · TQAES
)

Grover’s attack for key
recovery, OP unknown

Q1 O(1) 0 O
(

2(|K|+|OPc |)/2 · TQAES
)

Key Recovery f 2, OP
unknown

Q2 0 O (|M|) Õ
(

(|M| · TQAES) · 2|K|/2
)

??

Offline Key Recovery
f 2, OP unknown

Q1 O
(

2|M|
)

0 Õ

(
2|M| · TO + (|M| · TQAES) · 2

|K|
2

)
Existential Forgery f 1 Q2 O (1) O (|M|) O (|M| · TO )

Related Key Attack
f 1, . . . , f5

Q2 0 O (|K | + |OPc |) Õ ((|K | + |OPc |) · TO )

Offline Related Key At-
tack f 1, . . . , f 5

Q1 O

(
2
|K|+|OPc |

3

)
0 Õ (S · TO + S · TQAES)

where S = 2
|K|+OPc |

3

Table: Summary of the results. |K | is the length of the message authentication key, |OPC | is the length
of the OPc bitstring and |M| is the block length of the underlying block cipher. In the case of
Milenage, |K | = |OPC | = |M| = 128. For all complexity estimates, the big-O notation hides only a very
small multiplicative constant.
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Alternative to Milenage: TUAK

The TUAK algorithm set, based on the Keccak-f permutation [Mandal et al., 2015]. There are no
known quantum attacks against TUAK, even in the Q2 model.
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Conclusion

The Milenage algorithm exhibit structures making them susceptible to quantum period
finding attacks.

However, these do not imply that Milenage is broken.

Further research is required to see if attacks or security proofs can be extended.

Thank you for your attention! Questions/Comments? vincent@sect.tu-berlin.de
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