

qIND-qCPA (In)security of CBC, CFB, OFB and CTR

PQCrypto 2023

<u>Tristan Nemoz</u>, Zoé Amblard, Aurélien Dupin tristan.nemoz@telecom-paris.fr August 17, 2023

Problem

Being given a long message and a secure block cipher (e.g. AES), how to encrypt the message?

Problem

Being given a long message and a secure block cipher (e.g. AES), how to encrypt the message?

What if we simply encrypt each block?

Problem

Being given a long message and a secure block cipher (e.g. AES), how to encrypt the message?

What if we simply encrypt each block?

Ø

Figure: Original image

Figure: Encrypted image

Problem

Being given a long message and a secure block cipher (e.g. AES), how to encrypt the message?

What if we simply encrypt each block?

Figure: Original image

Figure: Encrypted image

Modes of operation allow us to securely encrypt long messages.

In particular, it acts as a stream cipher: $Enc_k^{CTR}(m) = m \oplus s$ for a (pseudo)random *s*.

IND-CPA Classical learning queries, Classical challenge queries

🔞 IP PARIS

IND-CPA Classical learning queries, Classical challenge queries

		CBC/OFB	
		with PRP	with qPRP
IND-CPA	1	1	1
IND-qCPA ¹			

IND-CPA Classical learning gueries, Classical challenge gueries IND-gCPA Quantum learning queries. Classical challenge queries

¹Boneh and Zhandry, "Secure Signatures and Chosen Ciphertext Security in a Quantu TELECOM Computing World". In: CRYPTO 2013.

	CTR/OFB	CBC/OFB	
		with PRP	with qPRP
IND-CPA	1	✓	✓
IND-qCPA ¹	√ ²	◆ ²	√ ²

IND-CPA Classical learning gueries, Classical challenge gueries IND-qCPA Quantum learning queries. Classical challenge queries

¹Boneh and Zhandry. "Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World", In: CRYPTO 2013.

²Anand et al., "Post-Quantum Security of the CBC, CFB, OFB, CTR, and XTS Modes c Operation". In: PQCrvpto 2016.

		CBC/OFB	
		with PRP	with qPRP
IND-CPA	1	1	1
IND-qCPA ¹	√ ²	◆ ²	√ ²
qIND-qCPA ³			

IND-CPA Classical learning queries, Classical challenge queries
 IND-qCPA Quantum learning queries, Classical challenge queries
 qIND-qCPA Quantum/Classical learning queries, Quantum challenge queries

¹Boneh and Zhandry, "Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World", In: CRYPTO 2013.

²Anand et al., "Post-Quantum Security of the CBC, CFB, OFB, CTR, and XTS Modes of Operation", In: PQCrypto 2016.

TELECOM Paris

³Carstens et al., "Relationships Between Quantum IND-CPA Notions", In: TCC 2021.

		CBC/OFB	
		with PRP	with qPRP
IND-CPA	1	✓	✓
IND-qCPA ¹	√ ²	◆ ²	√ ²
qIND-qCPA ³	This work	This work	This work

IND-CPA Classical learning queries, Classical challenge queries
 IND-qCPA Quantum learning queries, Classical challenge queries
 qIND-qCPA Quantum/Classical learning queries, Quantum challenge queries

¹Boneh and Zhandry, "Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World", In: CRYPTO 2013.

²Anand et al., "Post-Quantum Security of the CBC, CFB, OFB, CTR, and XTS Modes of Operation", In: PQCrypto 2016.

TELECOM Paris

³Carstens et al., "Relationships Between Quantum IND-CPA Notions", In: TCC 2021.

🔞 IP PARIS

🔞 IP PARIS

🐼 IP PARIS

🛞 IP PARIS

🛞 IP PARIS

🔞 IP PARIS

 $\mathsf{Enc}_{\mathsf{k}}(m) = m \oplus s$

 $Enc_k(m) = m \oplus s$

 \mathcal{A} sends $\frac{1}{\sqrt{2^n}}\sum_m |m\rangle$ to the challenge oracle.

 $Enc_k(m) = m \oplus s$

$$\mathcal{A} \text{ sends } \frac{1}{\sqrt{2^n}} \sum_m |m\rangle \text{ to the challenge oracle.}$$

If $b = 0$ $\frac{1}{\sqrt{2^n}} \sum_m |m, m \oplus s\rangle$

 $\mathsf{Enc}_{\mathsf{k}}(m) = m \oplus s$

 $\mathcal{A} \text{ sends } \frac{1}{\sqrt{2^n}} \sum_m |m\rangle \text{ to the challenge oracle.}$ If b = 0 $\frac{1}{\sqrt{2^n}} \sum_m |m, m \oplus s\rangle$ If b = 1 $\frac{1}{\sqrt{2^n}} \sum_m |m, \pi(m) \oplus s\rangle$

 $\mathsf{Enc}_{\mathsf{k}}(m) = m \oplus s$

 $\begin{array}{l} \mathcal{A} \text{ sends } \frac{1}{\sqrt{2^n}} \sum\limits_m |m\rangle \text{ to the challenge oracle.} \\ \\ \text{ If } b = 0 \ \frac{1}{\sqrt{2^n}} \sum\limits_m |m, m \oplus s\rangle \\ \\ \\ \text{ If } b = 1 \ \frac{1}{\sqrt{2^n}} \sum\limits_m |m, \pi(m) \oplus s\rangle \\ \\ |x, y\rangle \rightarrow |x, y \oplus x\rangle \text{ is a valid transformation.} \end{array}$

 $\mathsf{Enc}_{\mathsf{k}}(m) = m \oplus s$

 $\begin{array}{l} \mathcal{A} \text{ sends } \frac{1}{\sqrt{2^n}} \sum\limits_m |m\rangle \text{ to the challenge oracle.} \\ \text{ If } b = 0 \ \frac{1}{\sqrt{2^n}} \sum\limits_m |m, m \oplus s\rangle \\ \text{ If } b = 1 \ \frac{1}{\sqrt{2^n}} \sum\limits_m |m, \pi(m) \oplus s\rangle \\ |x, y\rangle \rightarrow |x, y \oplus x\rangle \text{ is a valid transformation.} \\ \text{ If } b = 0 \ \frac{1}{\sqrt{2^n}} \sum\limits_m |m, s\rangle \end{array}$

 $Enc_k(m) = m \oplus s$

 \mathcal{A} sends $\frac{1}{\sqrt{2^n}} \sum |m\rangle$ to the challenge oracle. If b = 0 $\frac{1}{\sqrt{2^n}} \sum_{m} |m, m \oplus s\rangle$ If b=1 $rac{1}{\sqrt{2^n}}\sum\limits_{m}|m,\pi(m)\oplus s
angle$ $|x, y\rangle \rightarrow |x, y \oplus x\rangle$ is a valid transformation. If b = 0 $\frac{1}{\sqrt{2^n}} \sum_{m} |m, s\rangle$ If b = 1 $\frac{1}{\sqrt{2^n}} \sum |m, m \oplus \pi(m) \oplus s \rangle$

 $\mathsf{Enc}_{\mathsf{k}}(m) = m \oplus s$

 \mathcal{A} sends $\frac{1}{\sqrt{2^n}}\sum_{m} |m\rangle$ to the challenge oracle. If b = 0 $\frac{1}{\sqrt{2^n}} \sum_{m} |m, m \oplus s\rangle$ If b = 1 $\frac{1}{\sqrt{2^n}} \sum |m, \pi(m) \oplus s \rangle$ $|x, y\rangle \rightarrow |x, y \oplus x\rangle$ is a valid transformation. If b = 0 $\frac{1}{\sqrt{2^n}} \sum_{m} |m, s\rangle$ If b=1 $rac{1}{\sqrt{2^n}}\sum_{m} |m,m\oplus\pi(m)\oplus s
angle$

In the Hadamard basis: $\mathbb{P}[|0\rangle] = 1$ if b = 0, $\frac{1}{2^{n-1}}$ otherwise.

IP PARIS

 $\mathsf{Enc}_{\mathsf{k}}(m) = m \oplus s$

 \mathcal{A} sends $\frac{1}{\sqrt{2^n}}\sum_{m} |m\rangle$ to the challenge oracle. If b = 0 $\frac{1}{\sqrt{2^n}} \sum |m, m \oplus s\rangle$ If b=1 $rac{1}{\sqrt{2^n}}\sum\limits_{m}|m,\pi(m)\oplus s
angle$ $|x, y\rangle \rightarrow |x, y \oplus x\rangle$ is a valid transformation. If b = 0 $\frac{1}{\sqrt{2^n}} \sum_{m} |m, s\rangle$ If b=1 $rac{1}{\sqrt{2^n}}\sum\limits_{u=1}|m,m\oplus\pi(m)\oplus s
angle$

In the Hadamard basis: $\mathbb{P}[|0\rangle] = 1$ if b = 0, $\frac{1}{2^{n-1}}$ otherwise. No (other) property of Enc has been used!

Suppose:

Suppose:

Enc_k $(x, r) = f_k(g(x, r))$ with g being public (e.g. XOR)

Suppose:

- Enc_k $(x, r) = f_k(g(x, r))$ with g being public (e.g. XOR)
- r is known by the adversary

Suppose:

Enc_k $(x, r) = f_k(g(x, r))$ with g being public (e.g. XOR)

r is known by the adversary

Then Enc is qIND-qCPA-P5-insecure.

Suppose:

Enc_k $(x, r) = f_k(g(x, r))$ with g being public (e.g. XOR)

r is known by the adversary

Then Enc is qIND-qCPA-P5-insecure.

One-to-one encryption is qIND-qCPA-P8-insecure

• $Enc_k : \{0,1\}^m \times \{0,1\}^p \rightarrow \{0,1\}^n$, with *m* being the message length

• $Enc_k : \{0,1\}^m \times \{0,1\}^p \to \{0,1\}^n$, with *m* being the message length Then there is an adversary with advantage $\frac{2^m}{2^n}$ in the qIND-qCPA-P8 game of Enc.

IP PARIS

• Enc_k : $\{0,1\}^m \times \{0,1\}^p \to \{0,1\}^n$, with *m* being the message length Then there is an adversary with advantage $\frac{2^m}{2^n}$ in the qIND-qCPA-P8 game of Enc.

Invalidates most modes of operation...

IP PARIS

• $Enc_k : \{0,1\}^m \times \{0,1\}^p \to \{0,1\}^n$, with *m* being the message length Then there is an adversary with advantage $\frac{2^m}{2^n}$ in the qIND-qCPA-P8 game of Enc.

Invalidates most modes of operation... without authenticity tag.

Shown results

Adapted Anand et al.'s results to all IND-qCPA notions

Shown results

- Adapted Anand et al.'s results to all IND-qCPA notions
- qIND-qCPA-P13-insecurity of CBC, CTR, OFB and CFB

Shown results

- Adapted Anand et al.'s results to all IND-qCPA notions
- qIND-qCPA-P13-insecurity of CBC, CTR, OFB and CFB
- Two general results on qIND-qCPA-P5 and qIND-qCPA-P8 security

Shown results

- Adapted Anand et al.'s results to all IND-qCPA notions
- qIND-qCPA-P13-insecurity of CBC, CTR, OFB and CFB
- Two general results on qIND-qCPA-P5 and qIND-qCPA-P8 security

Relevance of the qIND-qCPA security notions

Attacks are generic: how bad is it for a scheme to be qIND-qCPA-P13-insecure?

Shown results

- Adapted Anand et al.'s results to all IND-qCPA notions
- qIND-qCPA-P13-insecurity of CBC, CTR, OFB and CFB
- Two general results on qIND-qCPA-P5 and qIND-qCPA-P8 security

Relevance of the qIND-qCPA security notions

- Attacks are generic: how bad is it for a scheme to be qIND-qCPA-P13-insecure?
- No equivalent semantic security notion for most qIND-qCPA notions

Shown results

- Adapted Anand et al.'s results to all IND-qCPA notions
- qIND-qCPA-P13-insecurity of CBC, CTR, OFB and CFB
- Two general results on qIND-qCPA-P5 and qIND-qCPA-P8 security

Relevance of the qIND-qCPA security notions

- Attacks are generic: how bad is it for a scheme to be qIND-qCPA-P13-insecure?
- No equivalent semantic security notion for most qIND-qCPA notions

Takeaway: we need to perform more research to define a useful qIND-qCPA notion.

Thank you!

Two oracles for the IND-CPA game:

Two oracles for the IND-CPA game:

Query $m \to \operatorname{Enc}_k(m)$ Challenge $m_0, m_1 \to \operatorname{Enc}_k(m_b)$ Challenge type To choose from: Left-or-Right

Two oracles for the IND-CPA game:

 $\begin{array}{ll} \mbox{Query} & m \rightarrow \mbox{Enc}_{k}(m) \\ \mbox{Challenge} & m_{0}, m_{1} \rightarrow \\ & \mbox{Enc}_{k}(m_{b}), \mbox{Enc}_{k}(m_{\overline{b}}) \end{array}$

Challenge type To choose from: Left-or-Right 2-ciphertexts

Two oracles for the IND-CPA game:

Query $m \to \text{Enc}_k(m)$ Challenge $m \to \text{Enc}_k(\pi^b(m))$ Challenge type To choose from:

Left-or-Right

- 2-ciphertexts
- Real-or-Random

Two oracles for the IND-CPA game:

Query $m \to \operatorname{Enc}_k(m)$ Challenge $m \to \operatorname{Enc}_k(\pi^b(m))$

Challenge type To choose from:

Left-or-Right

2-ciphertexts

Real-or-Random

Number of challenge queries A single or $poly(\lambda)$

🔞 IP PARIS

Two oracles for the IND-CPA game:

Query $m \to \text{Enc}_k(m)$ Challenge $m \to \text{Enc}_k(\pi^b(m))$ Challenge type To choose from:

Left-or-Right

2-ciphertexts

Real-or-Random

Number of challenge queries A single or $poly(\lambda)$ Oracle type To choose from:

Classical

🔞 IP PARIS

Two oracles for the IND-CPA game:

 $\begin{array}{l} \mathsf{Query} \quad |x,y\rangle \rightarrow \\ |x,y \oplus \mathsf{Enc}_{\mathsf{k}}(x)\rangle \\ \mathsf{Challenge} \quad |x,y\rangle \rightarrow \\ |x,y \oplus \mathsf{Enc}_{\mathsf{k}}(\pi^{b}(x))\rangle \end{array}$

Challenge type To choose from:

Left-or-Right

2-ciphertexts

Real-or-Random

Number of challenge queries A single or $poly(\lambda)$

Oracle type To choose from:

Classical

Standard

Two oracles for the IND-CPA game:

$$\begin{array}{ll} \mbox{Query} & |x\rangle \rightarrow \left|x, \mbox{Enc}_{k}(x)\right\rangle \\ \mbox{Challenge} & |x\rangle \rightarrow \\ & |x, \mbox{Enc}_{k}\left(\pi^{b}(x)\right)\rangle \end{array}$$

Challenge type To choose from:

- Left-or-Right
- 2-ciphertexts
- Real-or-Random
- Number of challenge queries A single or $poly(\lambda)$

Oracle type To choose from:

- Classical
- Standard
- Embedding

Two oracles for the IND-CPA game:

$$\begin{array}{l} \mathsf{Query} \ |x\rangle \rightarrow \big|\mathsf{Enc}_{\mathsf{k}}(x)\big\rangle \\ \mathsf{Challenge} \ |x\rangle \rightarrow \big|\mathsf{Enc}_{\mathsf{k}}\left(\pi^{b}(x)\right)\big\rangle \end{array}$$

Challenge type To choose from:

- Left-or-Right
- 2-ciphertexts
- Real-or-Random
- Number of challenge queries A single or $poly(\lambda)$

Oracle type To choose from:

- Classical
- Standard
- Embedding
- Erasing

Two oracles for the IND-CPA game:

$$\begin{array}{l} \text{Query} \ |x\rangle \rightarrow \left| \mathsf{Enc}_{\mathsf{k}}(x) \right\rangle \\ \text{Challenge} \ |x\rangle \rightarrow \left| \mathsf{Enc}_{\mathsf{k}} \left(\pi^{b}(x) \right) \right\rangle \end{array}$$

Challenge type To choose from:

- Left-or-Right
- 2-ciphertexts
- Real-or-Random
- Number of challenge queries A single or $poly(\lambda)$

Oracle type To choose from:

- Classical
- Standard
- Embedding
- Erasing

 \implies Many notions, some of them being equivalent.

Two oracles for the IND-CPA game:

$$\begin{array}{l} \text{Query} \ |x\rangle \rightarrow \left| \mathsf{Enc}_{\mathsf{k}}(x) \right\rangle \\ \text{Challenge} \ |x\rangle \rightarrow \left| \mathsf{Enc}_{\mathsf{k}} \left(\pi^{b}(x) \right) \right\rangle \end{array}$$

Challenge type To choose from:

- Left-or-Right
- 2-ciphertexts
- Real-or-Random
- Number of challenge queries A single or $poly(\lambda)$

Oracle type To choose from:

- Classical
- Standard
- Embedding
- Erasing
- \implies Many notions, some of them being equivalent.
- \implies 14 different qIND-qCPA notions

IP PARIS

Bibliography I

- Anand, Mayuresh Vivekanand et al. "Post-Quantum Security of the CBC, CFB, OFB, CTR, and XTS Modes of Operation". In: *Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016.* Ed. by Tsuyoshi Takagi. Fukuoka, Japan: Springer, Heidelberg, Germany, Feb. 2016, pp. 44–63. DOI: 10.1007/978-3-319-29360-8_4.
- Boneh, Dan and Mark Zhandry. "Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World". In: Advances in Cryptology – CRYPTO 2013, Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. Lecture Notes in Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 2013, pp. 361–379. DOI: 10.1007/978-3-642-40084-1_21.

Carstens, Tore Vincent et al. "Relationships Between Quantum IND-CPA Notions". In: TCC 2021: 19th Theory of Cryptography Conference, Part I. Ed. by Kobbi Nissim and Brent Waters. Vol. 13042. Lecture Notes in Computer Science. Raleigh, NC, USA: Springer, Heidelberg, Germany, Nov. 2021, pp. 273–298. DOI: 10.1007/978-3-030-90459-3_9.

