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Background

Figure: NIST Additional PQ Signature Competition



HAWK

A post-quantum signature using probabilisitic hash and sign
based on the Lattice Isomorphism Problem (LIP)

History of HAWK:

▶ LIP framework [DvW22]

▶ HAWK [DPPvW22]

▶ submitted to NIST

Advantage:

▶ Discrete Gaussian
sampling (DGS) on
simple lattice

▶ fastest signing

▶ floating point free
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Overview

▶ Background

▶ Security of HAWK

▶ More Details



Security of HAWK

Key recovery: lattice isomorphism problem

What about unforgeability (EU-CMA)?

HAWK follows a non-standard variant of hash-and-sign:

▶ no “off-the-shelf” theorem to apply

▶ previous generic analyses do not apply

[DPPvW22]: Classical security in ROM ≥ one-more SVP

▶ does not carry over to the quantum setting

This work: Quantum security in QROM ≥ one-more SVP

▶ modular proof, accessible to non-quantum-experts

▶ replacing “quantum module” gives a classical proof
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One-more SVP (omSVP)

DGS on Z2n ∼= R2 in ∥x∥ :=
√
tr(x∗x)/n is easy

For B ∈ GL(R2) and Q := B∗B

▶ Given B: DGS in ∥x∥Q :=
√
tr(x∗Qx)/n is (very) easy

▶ Given Q but not B: (believed) hard to find x with small ∥x∥Q > 0,

even given Discrete Gaussian samples in ∥x∥Q (one-more SVP)
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(Over simplified) HAWK

D̃B [ h ]: discrete Gaussian on h + 2Z2n in ∥x∥Q := tr(x∗x)/n

SignB(m):
1: r ← {0, 1}saltlen
2: h := H(m, r)

3: v ← D̃B [ h ]
4: s := 1

2 (h + v)
5: return sig := (r , s)

VrfyQ(m, (r , s)):

1: v := 2s − H(m, r)
2: check s ∈ Z2n

3: check ∥v∥Q > 0 is small

If VrfyQ(m, sig) = 1 then ∥v∥Q > 0 is already small.

CMA attack: pick (r , s ′) where s ′ := 1
2 (h − v)
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Vanilla HAWK

D̃B [ h ]: discrete Gaussian on h + 2Z2n in ∥x∥Q := tr(x∗x)/n

SignB(m):
1: r ← {0, 1}saltlen
2: h := H(m, r)

3: v ← D̃B [ h ]
4: s := 1

2 (h + ⟨v⟩)
5: return sig := (r , s)

VrfyQ(m, (r , s)):

1: v := 2s − H(m, r)
2: check s ∈ Z2n

3: check ∥v∥Q > 0 is small
unique representation:
⟨v⟩ = ⟨−v⟩ ∈ {±v}

If VrfyQ(m, sig) = 1 then ∥v∥pk > 0 is already small.

CMA attack: pick (r , s ′) where s ′ := 1
2 (h − v)
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Proof Sketch

Goal: simulate SignB while preserving freshness of v .

SignB(m):

1: r ← {0, 1}saltlen
2: h := H(m, r)
3: v ← D̃B [ h ]
4: s := 1

2 (h + ⟨v⟩)
5: return sig := (r , s)

SimDGS in ∥x∥Q (m):

1: r ← {0, 1}saltlen
2: v ← DGS in ∥x∥Q
3: H(m, r) := h := v mod 2
4: s := 1

2 (h + ⟨v⟩)
5: return sig := (r , s)

Two steps:

▶ Closeness SignB ≈ Sim

▶ A fresh and valid forgery (m∗, sig∗ := (r∗, s∗))← AH,Sim

yields a fresh vector v∗ := 2s∗ − H(m∗, r∗).

Both require quantum reasoning.
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Closeness Signsk ≈ Sim

Introduce an intermediate oracle Trans.

SignBTrans(m):

1: r ← {0, 1}saltlen
2: h := H(m, r)
3: H(m, r) := h← {0, 1}2n
4: v ← D̃B [ h ]
5: s := 1

2 (h + ⟨v⟩)
6: return sig := (r , s)

SimDGS in ∥x∥Q (m):

1: r ← {0, 1}saltlen
2: v ← DGS in ∥x∥Q
3: H(m, r) := h := v mod 2
4: s := 1

2 (h + ⟨v⟩)
5: return sig := (r , s)

Two (sub)steps:

▶ SignB ≈ Trans by adaptive reprogramming lemma [GHHM21].

▶ Trans ≈ Sim by bounding statistical distance.

Improvable: replace statistical distance by Rényi’s divergence,
see HAWK spec.



Closeness Signsk ≈ Sim

Introduce an intermediate oracle Trans.

SignBTrans(m):

1: r ← {0, 1}saltlen
2: h := H(m, r)
3: H(m, r) := h← {0, 1}2n
4: v ← D̃B [ h ]
5: s := 1

2 (h + ⟨v⟩)
6: return sig := (r , s)

SimDGS in ∥x∥Q (m):

1: r ← {0, 1}saltlen
2: v ← DGS in ∥x∥Q
3: H(m, r) := h := v mod 2
4: s := 1

2 (h + ⟨v⟩)
5: return sig := (r , s)

Two (sub)steps:

▶ SignB ≈ Trans by adaptive reprogramming lemma [GHHM21].

▶ Trans ≈ Sim by bounding statistical distance.

Improvable: replace statistical distance by Rényi’s divergence,
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Classical Proof

To obtain classical proof:

▶ replace adaptive reprogramming lemma [GHHM21] to
classical reprogramming

▶ replace quantum preimage bound to classical one



That’s It

HAWK is quantum secure.

Eprint: ia.cr/2023/711

ia.cr/2023/711
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