On the Quantum Security of HAWK

Serge Fehr^{1,2} Yu-Hsuan Huang¹

¹Centrum Wiskunde & Informatica, The Netherlands

²Leiden University, The Netherlands

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Background

of armation Tachnology Laboratory		
COMPUTER SECURITY R	ESOURCE CENTER	
UPDATES 2023		
IIST Announces Ado	ditional Digital Signa	ature Candidates for the
NIST Announces Ado POC Standardizatio	ditional Digital Signa n Process	ature Candidates for the
NIST Announces Add PQC Standardizatio uly 17, 2023	ditional Digital Signa n Process	ature Candidates for the
VIST Announces Add PQC Standardizatio uly 17, 2023	ditional Digital Signa n Process	ature Candidates for the
NIST Announces Add PQC Standardizatio uly 17, 2023 f v response to a September 2022 announce candidates that met all submission requi	ditional Digital Signa n Process ment calling for additional Post-Quantum Cr rements.	ature Candidates for the
NIST Announces Add PQC Standardizatio uly 17, 2023 response to a September 2022 announce candidates that met all submission requi ee the PDC: Digital Signature Schemes pro	ditional Digital Signa n Process ment calling for additional Post-Quantum Cr rements.	ature Candidates for the yptography (PQC) Digital Signature Schemes, NIST received ssion details.
NIST Announces Add PQC Standardizatio uly 17, 2023 f • cresponse to a September 2022 announce 0 candidates that met all submission requi eet the <u>PQC Dipital Signature Schemes</u> pro his round of evaluation and analysis will iii nadradization conference in April 2024.	ditional Digital Signa n Process ment calling for additional Post-Quantum Cr rements. ject for the list of algorithms and their subm kely last several years. NIST invites feedback	ature Candidates for the yptography (PQC) Digital Signature Schemes, NIST received ssion details. on all 40 candidates. NIST anticipates holding the Fifth PQC

Figure: NIST Additional PQ Signature Competition

A post-quantum signature using probabilisitic hash and sign based on the Lattice Isomorphism Problem (LIP)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A post-quantum signature using probabilisitic hash and sign based on the Lattice Isomorphism Problem (LIP)

History of HAWK:

► LIP framework [DvW22]

On the Lattice Isomorphism Problem, Quadratic Forms, Remarkable Lattices, and Cryptography

Léo Ducas^{1,2} and Wessel van Woerden¹

 $^{1}\,$ CWI, Cryptology Group, Amsterdam, The Netherlands $^{2}\,$ Leiden University, Mathematical Institute, Leiden, The Netherlands

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A post-quantum signature using probabilisitic hash and sign based on the Lattice Isomorphism Problem (LIP)

History of HAWK:

- LIP framework [DvW22]
- HAWK [DPPvW22]

HAWK: Module LIP makes Lattice Signatures Fast, Compact and Simple

Léo Ducas^{1,2}, Eamonn W. Postlethwaite¹, Ludo N. Pulles¹, Wessel van Woerden¹

¹ CWI, Cryptology Group, Amsterdam, the Netherlands
² Mathematical Institute, Leiden University, Leiden, The Netherlands {ewp,lnp}@cwi.nl

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A post-quantum signature using probabilisitic hash and sign based on the Lattice Isomorphism Problem (LIP)

History of HAWK:

- ► LIP framework [DvW22]
- ► HAWK [DPPvW22]
- submitted to NIST

PQ Signatures Zoo	Schemes Para	rameters					
Performance Wide screen version							
Scheme	Status	Category					
Dilithium	To be standardized	Lattices					
EHTv3 / EHTv4 📐	On-ramp	Lattices					
EagleSign 📐	On-ramp	Lattices					
Falcon	To be standardized	Lattices					
HAETAE	On-ramp	Lattices					
HAWK	On-ramp	Lattices					
HuFu	On-ramp	Lattices					
	_						

A post-quantum signature using probabilisitic hash and sign based on the Lattice Isomorphism Problem (LIP)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

History of HAWK:

- LIP framework [DvW22]
- ► HAWK [DPPvW22]
- submitted to NIST

Advantage:

 Discrete Gaussian sampling (DGS) on simple lattice

A post-quantum signature using probabilisitic hash and sign based on the Lattice Isomorphism Problem (LIP)

History of HAWK:

- LIP framework [DvW22]
- HAWK [DPPvW22]
- submitted to NIST

Advantage:

- Discrete Gaussian sampling (DGS) on simple lattice
- fastest signing

Scheme	Parameterset	NIST level	Sign (cycles)	Verify (cycles)
HAWK	512	1	85,372	148,224
UOV	lp-pkc	1	105,324	224,006
UOV	Ip-classic	1	105,324	90,336
UOV	ls-pkc	1	109,314	276,520
UOV	Is-classic	1	109,314	58,274
HAWK	1024	5	180,816	302,861
TUOV	lp	1	220,792	491,120
TUOV	ls	1	272,394	570,194
UOV	III-pkc	3	299,316	917,402
UOV	III-classic	3	299,316	241,588
Dilithium	П	2	333,013	118,412

うしん 同一人用 人用 人口 マ

A post-quantum signature using probabilisitic hash and sign based on the Lattice Isomorphism Problem (LIP)

History of HAWK:

- LIP framework [DvW22]
- ► HAWK [DPPvW22]
- submitted to NIST

Advantage:

- Discrete Gaussian sampling (DGS) on simple lattice
- fastest signing
- floating point free

Overview

Security of HAWK

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

More Details

Key recovery: lattice isomorphism problem

Key recovery: lattice isomorphism problem What about unforgeability (EU-CMA)?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Key recovery: lattice isomorphism problem What about unforgeability (EU-CMA)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

HAWK follows a non-standard variant of hash-and-sign:

- no "off-the-shelf" theorem to apply
- previous generic analyses do not apply

Key recovery: lattice isomorphism problem What about unforgeability (EU-CMA)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

HAWK follows a non-standard variant of hash-and-sign:

- no "off-the-shelf" theorem to apply
- previous generic analyses do not apply

[DPPvW22]: Classical security in ROM \geq one-more SVP

does not carry over to the quantum setting

Key recovery: lattice isomorphism problem What about unforgeability (EU-CMA)?

HAWK follows a non-standard variant of hash-and-sign:

- no "off-the-shelf" theorem to apply
- previous generic analyses do not apply

[DPPvW22]: Classical security in ROM \geq one-more SVP

does not carry over to the quantum setting

This work: Quantum security in QROM \geq one-more SVP

- modular proof, accessible to non-quantum-experts
- replacing "quantum module" gives a classical proof

One-more SVP (omSVP)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One-more SVP (omSVP)

For $B \in GL(\mathcal{R}^2)$ and $Q := B^*B$

- Given B: DGS in $||x||_Q := \sqrt{\operatorname{tr}(x^*Qx)/n}$ is (very) easy
- ► Given Q but not B: (believed) hard to find x with small ||x||_Q > 0, even given Discrete Gaussian samples in ||x||_Q (one-more SVP)

・ロト・日本・日本・日本・日本・日本

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Vanilla HAWK

Overview

Security of HAWK

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

► More Details

Goal: simulate $Sign_B$ while preserving freshness of v.

Goal: simulate $Sign_B$ while preserving freshness of v.

 $\begin{array}{l} Sign_B(m):\\ 1:\ r\leftarrow\{0,1\}^{\text{saltlen}}\\ 2:\ h:=H(m,r)\\ 3:\ v\leftarrow\widetilde{D}_B\left[h\right]\\ 4:\ s:=\frac{1}{2}\left(h+\langle v\rangle\right)\\ 5:\ \textbf{return}\ sig:=(r,s) \end{array}$

Sim<sup>DGS in
$$||x||_Q(m)$$
:
1: $r \leftarrow \{0,1\}^{\text{saltlen}}$
2: $v \leftarrow DGS$ in $||x||_Q$
3: $H(m,r) := h := v \mod 2$
4: $s := \frac{1}{2}(h + \langle v \rangle)$
5: return $sig := (r, s)$</sup>

Goal: simulate $Sign_B$ while preserving freshness of v.

 $\begin{array}{l} Sign_B(m):\\ 1:\ r \leftarrow \{0,1\}^{\mathsf{saltlen}}\\ 2:\ h:=H(m,r)\\ 3:\ v \leftarrow \widetilde{D}_B\left[h\right]\\ 4:\ s:=\frac{1}{2}\left(h+\langle v\rangle\right)\\ 5:\ \mathbf{return}\ sig:=(r,s)\end{array}$

Sim<sup>DGS in
$$||x||_Q(m)$$
:
1: $r \leftarrow \{0,1\}^{\text{saltlen}}$
2: $v \leftarrow \text{DGS in } ||x||_Q$
3: $H(m,r) := h := v \mod 2$
4: $s := \frac{1}{2}(h + \langle v \rangle)$
5: **return** $sig := (r, s)$</sup>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Two steps:

- Closeness $Sign_B \approx Sim$
- A fresh and valid forgery (m^{*}, sig^{*} := (r^{*}, s^{*})) ← A^{H,Sim} yields a fresh vector v^{*} := 2s^{*} − H(m^{*}, r^{*}).

Goal: simulate $Sign_B$ while preserving freshness of v.

 $\begin{array}{l} Sign_B(m):\\ 1: \ r \leftarrow \{0,1\}^{\text{saltlen}}\\ 2: \ h := H(m,r)\\ 3: \ v \leftarrow \widetilde{D}_B \left[h\right]\\ 4: \ s := \frac{1}{2} \left(h + \langle v \rangle\right)\\ 5: \ \textbf{return} \ sig := (r,s) \end{array}$

Sim<sup>DGS in
$$||x||_Q(m)$$
:
1: $r \leftarrow \{0,1\}^{\text{saltlen}}$
2: $v \leftarrow \text{DGS in } ||x||_Q$
3: $H(m,r) := h := v \mod 2$
4: $s := \frac{1}{2}(h + \langle v \rangle)$
5: **return** $sig := (r, s)$</sup>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Two steps:

- Closeness $Sign_B \approx Sim$
- A fresh and valid forgery (m^{*}, sig^{*} := (r^{*}, s^{*})) ← A^{H,Sim} yields a fresh vector v^{*} := 2s^{*} − H(m^{*}, r^{*}).

Both require quantum reasoning.

Closeness $Sign_{sk} \approx Sim$

Introduce an intermediate oracle Trans.

 $\begin{array}{l} Sign_{B} Trans(m):\\ 1: \ r \leftarrow \{0,1\}^{\text{saltlen}}\\ 2: \ h := H(m,r)\\ 3: \ H(m,r) := h \leftarrow \{0,1\}^{2n}\\ 4: \ v \leftarrow \widetilde{D}_{B} \left[h\right]\\ 5: \ s := \frac{1}{2} \left(h + \langle v \rangle\right)\\ 6: \ \text{return } sig := (r,s) \end{array}$

 $Sim^{DGS \text{ in } ||x||_Q}(m):$ 1: $r \leftarrow \{0,1\}^{\text{saltlen}}$ 2: $v \leftarrow DGS \text{ in } ||x||_Q$ 3: $H(m,r) := h := v \mod 2$ 4: $s := \frac{1}{2} (h + \langle v \rangle)$ 5: return sig := (r,s)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Closeness $Sign_{sk} \approx Sim$

Introduce an intermediate oracle Trans.

 $\begin{array}{l} Sign_{B} Trans(m):\\ 1: \ r \leftarrow \{0,1\}^{\text{saltlen}}\\ 2: \ h := H(m,r)\\ 3: \ H(m,r) := h \leftarrow \{0,1\}^{2n}\\ 4: \ v \leftarrow \widetilde{D}_{B} [h]\\ 5: \ s := \frac{1}{2} (h + \langle v \rangle)\\ 6: \ \text{return } sig := (r,s) \end{array}$

$$Sim^{DGS \text{ in } ||x||_Q}(m):$$
1: $r \leftarrow \{0,1\}^{\text{saltlen}}$
2: $v \leftarrow DGS \text{ in } ||x||_Q$
3: $H(m,r) := h := v \mod 2$
4: $s := \frac{1}{2}(h + \langle v \rangle)$
5: return $sig := (r,s)$

Two (sub)steps:

► Sign_B ≈ Trans by adaptive reprogramming lemma [GHHM21].

• Trans \approx Sim by bounding statistical distance.

Closeness $Sign_{sk} \approx Sim$

Introduce an intermediate oracle Trans.

 $\begin{array}{l} Sign_{B} Trans(m):\\ 1: \ r \leftarrow \{0,1\}^{\text{saltlen}}\\ 2: \ h := H(m,r)\\ 3: \ H(m,r) := h \leftarrow \{0,1\}^{2n}\\ 4: \ v \leftarrow \widetilde{D}_{B} [h]\\ 5: \ s := \frac{1}{2} (h + \langle v \rangle)\\ 6: \ \text{return } sig := (r,s) \end{array}$

$$Sim^{DGS \text{ in } ||x||_Q}(m):$$
1: $r \leftarrow \{0,1\}^{\text{saltlen}}$
2: $v \leftarrow DGS \text{ in } ||x||_Q$
3: $H(m,r) := h := v \mod 2$
4: $s := \frac{1}{2}(h + \langle v \rangle)$
5: return $sig := (r,s)$

Two (sub)steps:

Sign_B \approx Trans by adaptive reprogramming lemma [GHHM21].

• Trans \approx Sim by bounding statistical distance.

Improvable: replace statistical distance by Rényi's divergence, see HAWK spec.

To obtain classical proof:

 replace adaptive reprogramming lemma [GHHM21] to classical reprogramming

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

replace quantum preimage bound to classical one

That's It

HAWK is quantum secure.

Eprint: ia.cr/2023/711

References I

[DPPvW22] Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel van Woerden. Hawk: Module LIP makes lattice signatures fast, compact and simple. In Shweta Agrawal and Dongdai Lin, editors, <u>Advances</u> in Cryptology – ASIACRYPT 2022, pages 65–94, Cham, 2022. Springer Nature Switzerland.

[DvW22] Léo Ducas and Wessel van Woerden. On the lattice isomorphism problem, quadratic forms, remarkable lattices, and cryptography. In Orr Dunkelman and Stefan Dziembowski, editors, <u>Advances in Cryptology</u> <u>– EUROCRYPT 2022</u>, pages 643–673, Cham, 2022. Springer International Publishing. [GHHM21] Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. Tight adaptive reprogramming in the QROM. In Mehdi Tibouchi and Huaxiong Wang, editors, <u>Advances in Cryptology –</u> <u>ASIACRYPT 2021</u>, pages 637–667, Cham, 2021. Springer International Publishing.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●