

Do Not Bound to a Single Position: Near-Optimal Multi-Positional Mismatch Attacks Against Kyber and Saber

QIAN GUO², ERIK MÅRTENSSON^{1,2}

¹Selmer Center, Department of Informatics, University of Bergen, Norway
²Dept. of Electrical and Information Technology, Lund University, Sweden

Post-Quantum Cryptography

• Today cryptography depends on the assumption that either the integer factoring problem or the discrete logarithm problem is computationally infeasible.

Post-Quantum Cryptography

- Today cryptography depends on the assumption that either the integer factoring problem or the discrete logarithm problem is computationally infeasible.
- In the mid 90s Peter Shor showed that both problems can be solved in polynomial time on a large-scale quantum computer.

Post-Quantum Cryptography

- Today cryptography depends on the assumption that either the integer factoring problem or the discrete logarithm problem is computationally infeasible.
- In the mid 90s Peter Shor showed that both problems can be solved in polynomial time on a large-scale quantum computer.
- Post-quantum cryptography replaces these mathematical problems
 - Lattice-based cryptography
 - » Learning With Errors/Rounding (LW(E/R))
 - » Ring/module LW(E/R)
 - » NTRU
 - Code-based, multivariate, hash-based, supersingular isogeny cryptography...

• First round (Dec. 2017): 59 PKE/KEM and 23 signature schemes

- First round (Dec. 2017): 59 PKE/KEM and 23 signature schemes
- Second round (Jan. 2019): 17 PKE/KEM and 9 signature schemes

- First round (Dec. 2017): 59 PKE/KEM and 23 signature schemes
- Second round (Jan. 2019): 17 PKE/KEM and 9 signature schemes
- Third round (Jul. 2020): 9 PKE/KEM and 6 signature schemes. 4 finalists for PKE/KEM
 - 3 lattice-based: Kyber, Saber, NTRU
 - 1 code-based: Classical McEliece

- First round (Dec. 2017): 59 PKE/KEM and 23 signature schemes
- Second round (Jan. 2019): 17 PKE/KEM and 9 signature schemes
- Third round (Jul. 2020): 9 PKE/KEM and 6 signature schemes. 4 finalists for PKE/KEM
 - 3 lattice-based: Kyber, Saber, NTRU
 - 1 code-based: Classical McEliece
- Fourth round (Jul. 2022): Kyber is selected for PKE/KEM!

• Kyber/Saber start by creating a Chosen Plaintext Attack (CPA) secure scheme.

- Kyber/Saber start by creating a Chosen Plaintext Attack (CPA) secure scheme.
- Then they make the scheme Chosen Ciphertext Attack (CCA) secure using the Fujisaki-Okamoto (FO) transform.

- Kyber/Saber start by creating a Chosen Plaintext Attack (CPA) secure scheme.
- Then they make the scheme Chosen Ciphertext Attack (CCA) secure using the Fujisaki-Okamoto (FO) transform.
- In this paper we study attacks on the CPA-secure version, when the secret key is re-used.
 - Resistance against these types of attacks is a desirable property according to the original NIST PQC call.
 - You shouldn't implement the schemes like this but someone might still do it!
 - Mismatch attacks also have applications in side-channel attacks [SCZ+22, ...] and fault-injection attacks[XIU+21].

- Kyber/Saber start by creating a Chosen Plaintext Attack (CPA) secure scheme.
- Then they make the scheme Chosen Ciphertext Attack (CCA) secure using the Fujisaki-Okamoto (FO) transform.
- In this paper we study attacks on the CPA-secure version, when the secret key is re-used.
 - Resistance against these types of attacks is a desirable property according to the original NIST PQC call.
 - You shouldn't implement the schemes like this but someone might still do it!
 - Mismatch attacks also have applications in side-channel attacks [SCZ+22, ...] and fault-injection attacks[XIU+21].
 - Finally, [QZC+21] gave a bound for the performance of this type of attack at Asiacrypt 2021 - we didn't believe the bound!

Some Notations

Given positive integers p, q, with p < q and $x \in \mathbb{Z}_q$.

$$\mathbf{Compress}_q(x, p) = \lceil x \cdot p/q \rfloor \mod +p,$$

where mod +p chooses a value in (-p/2, p/2].

Some Notations

Given positive integers p, q, with p < q and $x \in \mathbb{Z}_q$.

$$\mathbf{Compress}_q(x, p) = \lceil x \cdot p/q \rfloor \mod {+p},$$

where mod +p chooses a value in (-p/2, p/2]. Also,

$$\mathsf{Decompress}_q(x,p) = \lceil x \cdot q/p \rfloor.$$

Finally, let \mathbf{B}_{η} denote the central binomial distribution with parameter η .

Alice

1. Generate matrix $oldsymbol{a} \in \mathcal{R}_q^{l imes l}$		
$\mathbf{s}_{\mathcal{A}}, \mathbf{e}_{\mathcal{A}} _{\$} \mathbf{B}_{\eta}'$		2. m
$P_{\mathcal{A}} \leftarrow a \circ s_{\mathcal{A}} + e_{\mathcal{A}}$		Gen
Output: $(\mathbf{s}_{\mathcal{A}}, \mathbf{P}_{\mathcal{A}})$	$\xrightarrow{\mathbf{P}_{\mathcal{A}}}$	s _B ←
		P <i>B</i> ↔
		v <i>B</i> ↔
3. $\mathbf{u}_A \leftarrow \mathbf{Decompress}_q(\mathbf{c}_1, 2^{o_{\mathbf{P}_B}})$		c ₁ ←
$\mathbf{v}_{\mathcal{A}} \leftarrow \mathbf{Decompress}_q(\mathbf{c_2}, 2^{\mathcal{O}_{\mathbf{v}_B}})$	$\mathbf{P}_B, \mathbf{c}_1, \mathbf{c}_2$	c ₂ ←
$m' \leftarrow Compress_q(v_{\mathcal{A}} - s^{tr}_{\mathcal{A}} \circ u_{\mathcal{A}}, 2)$		K _B ∢
$\textit{K}_{\textit{A}} \gets \textit{H}(\textit{m}' (\textit{P}_{\textit{B}},(\textit{c}_{1},\textit{c}_{2})))$		

 $\leftarrow \{0, 1\}^{256}$ erate matrix $\mathbf{a} \in \mathcal{R}_{a}^{I \times I}$ $- \mathbf{s} \mathbf{B}'_{\eta}, \mathbf{e}_B \leftarrow \mathbf{s} \mathbf{B}'_{\eta'}, \mathbf{e}'_B \leftarrow \mathbf{s} \mathbf{B}_{\eta'}$ $-\mathbf{a} \circ \mathbf{s}_{B} + \mathbf{e}_{B}$ $-\mathbf{P}_{A}^{\mathrm{tr}}\circ\mathbf{s}_{B}+\mathbf{e}_{B}^{\prime}$ + Decompress_a(m, 2) - Compress_a(\mathbf{P}_B , $2^{d_{\mathbf{P}_B}}$) - Compress_a(v_B , 2^{d_{v_B}}) $= \mathbf{H}(\mathbf{m}||(\mathbf{P}_{B}, (\mathbf{c}_{1}, \mathbf{c}_{2})))$

Bob

Figure: The CPA-secure version of Kyber

Mismatch Attack Idea

 Eve impersonates Bob and manipulates his public parameters P_B, c₁, c₂ in a smart way.

Mismatch Attack Idea

- Eve impersonates Bob and manipulates his public parameters P_B, c₁, c₂ in a smart way.
- By observing whether Bob's key K_B matches Alice's key K_A she learns (up to) a bit of information about the secret s_A.
 - Eve essentially asks a yes/no question about the contents of s_A with some restrictions.

Mismatch Attack Idea

- Eve impersonates Bob and manipulates his public parameters P_B, c₁, c₂ in a smart way.
- By observing whether Bob's key K_B matches Alice's key K_A she learns (up to) a bit of information about the secret s_A.
 - Eve essentially asks a yes/no question about the contents of s_A with some restrictions.
- By repeating the process enough times Eve learns the entire secret \mathbf{s}_A .

Mismatch Attack Idea Detailed for Kyber1024

- $\mathbf{m} = [1, 0, \dots, 0].$
- $\mathbf{P}_B = \left[\left\lceil \frac{q}{32} \right\rfloor, 0, \dots, 0 \right]$
- $c_1 = \text{Compress}_q(P_B, 2^{d_{P_B}})$
- $\mathbf{c}_2 = [h, 0, \dots, 0]^T$

College Park, August 17

Mismatch Attack Idea Detailed for Kyber1024

- $\mathbf{m} = [1, 0, \dots, 0].$
- $\mathbf{P}_B = \left[\left\lceil \frac{q}{32} \right\rfloor, 0, \dots, 0 \right]$
- $\mathbf{c}_1 = \mathbf{Compress}_q(\mathbf{P}_B, 2^{d_{\mathbf{P}_B}})$
- $\mathbf{c}_2 = [h, 0, \dots, 0]^T$

Alice' and Bob's keys match if and only if $\mathbf{m}'[0]$ and $\mathbf{m}[0] = 1$ match¹.

$$\begin{aligned} \mathbf{m}'[\mathbf{0}] = & \mathbf{Compress}_q((\mathbf{v}_A - \mathbf{s}_A^{\mathrm{tr}} \mathbf{u}_A)[\mathbf{0}], \mathbf{2}) \\ = & \mathbf{Compress}_q(\mathbf{v}_A[\mathbf{0}] - (\mathbf{s}_A^{\mathrm{tr}} \mathbf{u}_A)[\mathbf{0}], \mathbf{2}) \\ = & \left\lceil \frac{2}{q} \left(\left\lceil \frac{q}{32} h \right\rfloor - \mathbf{s}_A[\mathbf{0}] \left\lceil \frac{q}{32} \right\rfloor \right) \right\rfloor \mod 2. \end{aligned}$$

¹Minor tweaks make it possible for Eve to find $\mathbf{s}_{A}[i]$, for $i \neq 0$.

College Park, August 17

PQCrypto 2023

Selecting *h* for Mismatch Attacks on Kyber1024

Table: $\mathbf{m}'[0]$ as a function of $\mathbf{s}_{A}[0]$ for different values of *h* for Kyber1024.

	$\mathbf{s}_{\mathcal{A}}[0]$									
h	-2	-1	0	1	2					
7	1	0	0	0	0					
8	1	1	0	0	0					
9	1	1	1	0	0					
10	1	1	1	1	0					
22	0	1	1	1	1					
23	0	0	1	1	1					
24	0	0	0	1	1					
25	0	0	0	0	1					

College Park, August 17

PQCrypto 2023

College Park, August 17

PQCrypto 2023

College Park, August 17

PQCrypto 2023

College Park, August 17

PQCrypto 2023

College Park, August 17

PQCrypto 2023

Our Mismatch Attacks in Two Dimensions

Allow the values of \mathbf{m} , \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{P}_B to be non-zero for index i = 0 and/or i = 128. Alice' and Bob's keys match if and only if $\mathbf{m}'[i]$ and $\mathbf{m}[i]$ match for i = 0 and i = 128.²

²Minor tweaks make it possible for Eve to find $\mathbf{s}_{A}[i]$ and $\mathbf{s}_{A}[i+128]$, for $i \neq 0$.

Our Mismatch Attacks in Two Dimensions

Allow the values of \mathbf{m} , \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{P}_B to be non-zero for index i = 0 and/or i = 128. Alice' and Bob's keys match if and only if $\mathbf{m}'[i]$ and $\mathbf{m}[i]$ match for i = 0 and i = 128.²

•
$$m[0] = 1$$
 and/or $m[128] = 1$.

•
$$\mathbf{P}_{B}[0] = b_{1}\lceil \frac{q}{32}
floor, \mathbf{P}_{B}[128] = b_{2}\lceil \frac{q}{32}
floor, b_{1}, b_{2} \in \{-1, 0, 1\}.$$

- $c_1 = Compress_q(P_B, 2^{d_{P_B}})$
- $\mathbf{c}_2[0] = h_1, \, \mathbf{c}_2[128] = h_2$

²Minor tweaks make it possible for Eve to find $\mathbf{s}_{A}[i]$ and $\mathbf{s}_{A}[i+128]$, for $i \neq 0$.

Our Mismatch Attacks in Two Dim. Cont.

$$\mathbf{m}'[0] = \mathbf{Compress}_q(\mathbf{v}_A[0] - (\mathbf{s}_A^{tr}\mathbf{u}_A)[0], 2)$$

$$= \left\lceil \frac{2}{q} \left(\left\lceil \frac{q}{32} h_1 \right\rfloor - \left(\mathbf{s}_A[0] b_1 \left\lceil \frac{q}{32} \right\rfloor - \mathbf{s}_A[128] b_2 \left\lceil \frac{q}{32} \right\rfloor \right) \right) \right\rfloor \mod 2,$$

$$\mathbf{m}'[128] = \mathbf{Compress}_q(\mathbf{v}_A[128] - (\mathbf{s}_A^{tr}\mathbf{u}_A)[128], 2)$$

$$= \left\lceil \frac{2}{q} \left(\left\lceil \frac{q}{32} h_2 \right\rfloor - \left(\mathbf{s}_A[0] b_2 \left\lceil \frac{q}{32} \right\rfloor + \mathbf{s}_A[128] b_1 \left\lceil \frac{q}{32} \right\rfloor \right) \right) \right\rfloor \mod 2.$$

Planar Splits

				s_0		
m′	[0]	-2	-1	0	1	2
S ₁₂₈	-2	1	1	1	0	0
	-1	1	1	1	0	0
	0	1	1	1	0	0
	1	1	1	1	0	0
	2	1	1	1	0	0

(a) A vertical split.

				s_0						
\mathbf{m}'	[0]	-2	-1	0	1	2				
	-2	0	0	0	0	0				
	-1	0	0	0	0	0				
S 128	0	0	0	0	0	0				
	1	1	1	1	1	1				
	2	1	1	1	1	1				
(b) A horizontal split.										

Rectangular Split

Figure: The cuts with respect to $\mathbf{m}'[0]$, $\mathbf{m}'[128]$ and $\mathbf{m}' = \mathbf{m}'[0]\&\mathbf{m}'[128]$.

Triangular Splits

				s_0		
m′	[0]	-2	-1	0	1	2
	-2	0	1	1	1	1
S 128	-1	0	0	1	1	1
	0	0	0	0	1	1
	1	0	0	0	0	1
	2	0	0	0	0	0

(a) A triangular cut of the secret values, originating from the upper right corner.

 S_0 **m**′[0] -2 -1 -2 -1 S128 ()

(b) A triangular cut of the secret values, originating from the upper left corner.

Intersecting Triangular Splits

Figure: The cuts with respect to $\mathbf{m}'[0]$, $\mathbf{m}'[128]$ and $\mathbf{m}' = \mathbf{m}'[0] \& \mathbf{m}'[128]$.

				s_0		
256 · $P(s_0, s_1)$	28)	-2	-1	0	1	2
s ₁₂₈	-2	1	4	6	4	1
	-1	4	16	24	16	4
	0	6	24	36	24	6
	1	4	16	24	16	4
	2	1	4	6	4	1

PQCrypto 2023

				s_0		
$256 \cdot P(s_0, s_1)$	28)	-2	-1	0	1	2
s ₁₂₈	-2	1	4	6	4	1
	-1	4	16	24	16	4
	0	6	24	36	24	6
	1	4	16	24	16	4
	2	1	4	6	4	1

PQCrypto 2023

				s_0		
$256 \cdot P(s_0, s_1)$	28)	-2	-1	0	1	2
s ₁₂₈	-2	1	4	6	4	1
	-1	4	16	24	16	4
	0	6	24	36	24	6
	1	4	16	24	16	4
	2	1	4	6	4	1

PQCrypto 2023

				s_0		
256 · <i>P</i> (<i>s</i> ₀ , <i>s</i> ₁	28)	-2	-1	0	1	2
s ₁₂₈	-2	1	4	6	4	1
	-1	4	16	24	16	4
	0	6	24	36	24	6
	1	4	16	24	16	4
	2	1	4	6	4	1

PQCrypto 2023

				s_0		
$256 \cdot P(s_0, s_1)$	28)	-2	-1	0	1	2
S ₁₂₈	-2	1	4	6	4	1
	-1	4	16	24	16	4
	0	6	24	36	24	6
	1	4	16	24	16	4
	2	1	4	6	4	1

College Park, August 17

PQCrypto 2023

Results and Comparisons

	Kyber512	Kyber768	Kyber1024	LightSaber	Saber	FireSaber
[QZC+21]	1312	1776	2368	1460	2091	2624
Huffman Bound 1	1216	1632	2176	1412	1986	2432
Our Result 1	1205.3	1588.5	2118	-	-	2410.6
Our Result 2	1217.7	1599	2132	1410.2	1984.9	2435.4
Huffman Bound 2	1202.1	1575	2100	1395.9	1970.0	2404.3
Huffman Bound 3	1199.9	1569.8	2093.0	1391.7	1962.3	2399.7
Shannon Bound	1195	1560	2079	1386	1954	2389

Mismatch Attack Plus Lattice Reduction³

Figure: Complexity to break Kyber1024 as a function of # mismatch attacks queries.

³Studied concurrently and independently in https://eprint.iacr.org/2022/1064.

• In a very recent work⁴ our method got improved - by a lot!

⁴https://eprint.iacr.org/2023/887

PQCrypto 2023

- In a very recent work⁴ our method got improved by a lot!
- Instead of gaining up to 1 bit per query, the authors can get up to p bits per query, at a computational cost of O(2^p).

- In a very recent work⁴ our method got improved by a lot!
- Instead of gaining up to 1 bit per query, the authors can get up to p bits per query, at a computational cost of O(2^p).
- At a very modest computational cost they reduce the query complexity by around 95 %!

- In a very recent work⁴ our method got improved by a lot!
- Instead of gaining up to 1 bit per query, the authors can get up to p bits per query, at a computational cost of O(2^p).
- At a very modest computational cost they reduce the query complexity by around 95 %!
- The main reviewer complaint about our paper was its incremental improvement interestingly it inspired a method for a huge improvement!

⁴https://eprint.iacr.org/2023/887

- In a very recent work⁴ our method got improved by a lot!
- Instead of gaining up to 1 bit per query, the authors can get up to p bits per query, at a computational cost of O(2^p).
- At a very modest computational cost they reduce the query complexity by around 95 %!
- The main reviewer complaint about our paper was its incremental improvement interestingly it inspired a method for a huge improvement!
- Their attack is similar to (and applies to) parallel PC oracle attacks [GPDA+23,TUX23]

⁴https://eprint.iacr.org/2023/887

• Can the recent improvement of our work⁵ be further improved?

⁵https://eprint.iacr.org/2023/887

PQCrypto 2023

- Can the recent improvement of our work⁵ be further improved?
- What can be achieved for other lattice-based schemes like NewHope, Frodo, etc.?

