Do Not Bound to a Single Position: Near-Optimal Multi-Positional Mismatch Attacks Against Kyber and Saber

Qian Guo ${ }^{2}$, Erik MÅRTENSSON ${ }^{1,2}$
${ }^{1}$ Selmer Center, Department of Informatics, University of Bergen, Norway
${ }^{2}$ Dept. of Electrical and Information Technology, Lund University, Sweden

Post-Quantum Cryptography

- Today cryptography depends on the assumption that either the integer factoring problem or the discrete logarithm problem is computationally infeasible.

Post-Quantum Cryptography

- Today cryptography depends on the assumption that either the integer factoring problem or the discrete logarithm problem is computationally infeasible.
- In the mid 90s Peter Shor showed that both problems can be solved in polynomial time on a large-scale quantum computer.

Post-Quantum Cryptography

- Today cryptography depends on the assumption that either the integer factoring problem or the discrete logarithm problem is computationally infeasible.
- In the mid 90s Peter Shor showed that both problems can be solved in polynomial time on a large-scale quantum computer.
- Post-quantum cryptography replaces these mathematical problems
- Lattice-based cryptography
" Learning With Errors/Rounding (LW(E/R))
" Ring/module LW(E/R)
" NTRU
- Code-based, multivariate, hash-based, supersingular isogeny cryptography...

NIST Post-Quantum Cryptography Standardization

- First round (Dec. 2017): 59 PKE/KEM and 23 signature schemes

NIST Post-Quantum Cryptography Standardization

- First round (Dec. 2017): 59 PKE/KEM and 23 signature schemes
- Second round (Jan. 2019): 17 PKE/KEM and 9 signature schemes

NIST Post-Quantum Cryptography Standardization

- First round (Dec. 2017): 59 PKE/KEM and 23 signature schemes
- Second round (Jan. 2019): 17 PKE/KEM and 9 signature schemes
- Third round (Jul. 2020): 9 PKE/KEM and 6 signature schemes. 4 finalists for PKE/KEM
- 3 lattice-based: Kyber, Saber, NTRU
- 1 code-based: Classical McEliece

NIST Post-Quantum Cryptography Standardization

- First round (Dec. 2017): 59 PKE/KEM and 23 signature schemes
- Second round (Jan. 2019): 17 PKE/KEM and 9 signature schemes
- Third round (Jul. 2020): 9 PKE/KEM and 6 signature schemes. 4 finalists for PKE/KEM
- 3 lattice-based: Kyber, Saber, NTRU
- 1 code-based: Classical McEliece
- Fourth round (Jul. 2022): Kyber is selected for PKE/KEM!

Kyber/Saber Structure and Attack Model

- Kyber/Saber start by creating a Chosen Plaintext Attack (CPA) secure scheme.

Kyber/Saber Structure and Attack Model

- Kyber/Saber start by creating a Chosen Plaintext Attack (CPA) secure scheme.
- Then they make the scheme Chosen Ciphertext Attack (CCA) secure using the Fujisaki-Okamoto (FO) transform.

Kyber/Saber Structure and Attack Model

- Kyber/Saber start by creating a Chosen Plaintext Attack (CPA) secure scheme.
- Then they make the scheme Chosen Ciphertext Attack (CCA) secure using the Fujisaki-Okamoto (FO) transform.
- In this paper we study attacks on the CPA-secure version, when the secret key is re-used.
- Resistance against these types of attacks is a desirable property according to the original NIST PQC call.
- You shouldn't implement the schemes like this - but someone might still do it!
- Mismatch attacks also have applications in side-channel attacks [SCZ+22, ...] and fault-injection attacks[XIU+21].

Kyber/Saber Structure and Attack Model

- Kyber/Saber start by creating a Chosen Plaintext Attack (CPA) secure scheme.
- Then they make the scheme Chosen Ciphertext Attack (CCA) secure using the Fujisaki-Okamoto (FO) transform.
- In this paper we study attacks on the CPA-secure version, when the secret key is re-used.
- Resistance against these types of attacks is a desirable property according to the original NIST PQC call.
- You shouldn't implement the schemes like this - but someone might still do it!
- Mismatch attacks also have applications in side-channel attacks [SCZ+22, ...] and fault-injection attacks[XIU+21].
- Finally, [QZC+21] gave a bound for the performance of this type of attack at Asiacrypt 2021 - we didn't believe the bound!

Some Notations

Given positive integers p, q, with $p<q$ and $x \in \mathbb{Z}_{q}$.

$$
\operatorname{Compress}_{q}(x, p)=\lceil x \cdot p / q\rfloor \quad \bmod ^{+} p
$$

where $\bmod { }^{+} p$ chooses a value in $(-p / 2, p / 2]$.

Some Notations

Given positive integers p, q, with $p<q$ and $x \in \mathbb{Z}_{q}$.

$$
\operatorname{Compress}_{q}(x, p)=\lceil x \cdot p / q\rfloor \quad \bmod ^{+} p
$$

where $\bmod { }^{+} p$ chooses a value in $(-p / 2, p / 2]$. Also,

$$
\operatorname{Decompress}_{q}(x, p)=\lceil x \cdot q / p\rfloor .
$$

Finally, let \mathbf{B}_{η} denote the central binomial distribution with parameter η.

1. Generate matrix $\mathbf{a} \in \mathcal{R}_{q}^{\mid \times 1}$
$\mathbf{s}_{A}, \mathbf{e}_{A} \leftarrow{ }^{\prime} \mathbf{B}_{\eta}^{\prime}$
$\mathbf{P}_{A} \leftarrow \mathbf{a} \circ \mathbf{s}_{A}+\mathbf{e}_{A}$
Output: $\left(\mathbf{s}_{A}, \mathbf{P}_{A}\right)$
2. $\boldsymbol{m} \leftarrow\left\{\{0,1\}^{256}\right.$

Generate matrix $\mathbf{a} \in \mathcal{R}_{q}^{\mid \times 1}$
$\xrightarrow{\mathbf{P}_{A}}$
$\mathbf{s}_{B} \leftarrow \$ \mathbf{B}_{\eta}^{\prime}, \mathbf{e}_{B} \leftarrow \$ \mathbf{B}_{\eta^{\prime}}^{\prime}, \mathbf{e}_{B}^{\prime} \leftarrow \$ \mathbf{B}_{\eta^{\prime}}$
$\mathbf{P}_{B} \leftarrow \mathbf{a} \circ \mathbf{s}_{B}+\mathbf{e}_{B}$
$\mathbf{v}_{B} \leftarrow \mathbf{P}_{A}^{\mathrm{tr}} \circ \mathbf{s}_{B}+\mathbf{e}_{B}^{\prime}$

+ Decompress $_{q}(\mathbf{m}, 2)$

3. $\mathbf{u}_{A} \leftarrow$ Decompress $_{q}\left(\mathbf{c}_{1}, 2^{d_{P_{B}}}\right)$
$\mathbf{v}_{A} \leftarrow$ Decompress $_{q}\left(\mathbf{c}_{2}, 2^{d_{\mathbf{v}_{B}}}\right)$
$\mathbf{m}^{\prime} \leftarrow \operatorname{Compress}_{q}\left(\mathbf{v}_{A}-\mathbf{s}_{A}^{\mathrm{tr}} \circ \mathbf{u}_{A}, 2\right)$
$K_{A} \leftarrow \mathbf{H}\left(\mathbf{m}^{\prime} \|\left(\mathbf{P}_{B},\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)\right)\right)$

Mismatch Attack Idea

- Eve impersonates Bob and manipulates his public parameters $\mathbf{P}_{B}, \mathbf{c}_{1}, \mathbf{c}_{2}$ in a smart way.

Mismatch Attack Idea

- Eve impersonates Bob and manipulates his public parameters $\mathbf{P}_{B}, \mathbf{c}_{1}, \mathbf{c}_{2}$ in a smart way.
- By observing whether Bob's key K_{B} matches Alice's key K_{A} she learns (up to) a bit of information about the secret \mathbf{s}_{A}.
- Eve essentially asks a yes/no question about the contents of \mathbf{s}_{A} - with some restrictions.

Mismatch Attack Idea

- Eve impersonates Bob and manipulates his public parameters $\mathbf{P}_{B}, \mathbf{c}_{1}, \mathbf{c}_{2}$ in a smart way.
- By observing whether Bob's key K_{B} matches Alice's key K_{A} she learns (up to) a bit of information about the secret \mathbf{s}_{A}.
- Eve essentially asks a yes/no question about the contents of \mathbf{s}_{A} - with some restrictions.
- By repeating the process enough times Eve learns the entire secret \mathbf{s}_{A}.

Mismatch Attack Idea Detailed for Kyber1024

- $\mathbf{m}=[1,0, \ldots, 0]$.
- $\mathbf{P}_{B}=\left[\left\lceil\frac{q}{32}\right\rfloor, 0, \ldots, 0\right]$
- $\mathbf{c}_{1}=\operatorname{Compress}_{q}\left(\mathbf{P}_{B}, 2^{d_{P_{B}}}\right)$
- $\mathbf{c}_{2}=[h, 0, \ldots, 0]$

Mismatch Attack Idea Detailed for Kyber1024

- $\mathbf{m}=[1,0, \ldots, 0]$.
- $\mathbf{P}_{B}=\left[\left\lceil\frac{q}{32}\right\rfloor, 0, \ldots, 0\right]$
- $\mathbf{c}_{1}=\operatorname{Compress}_{q}\left(\mathbf{P}_{B}, 2^{d_{P_{B}}}\right)$
- $\mathbf{c}_{2}=[h, 0, \ldots, 0]$

Alice' and Bob's keys match if and only if $\mathbf{m}^{\prime}[0]$ and $\mathbf{m}[0]=1$ match 1.

$$
\begin{aligned}
\mathbf{m}^{\prime}[0] & =\operatorname{Compress}_{q}\left(\left(\mathbf{v}_{A}-\mathbf{s}_{A}^{\text {tr }} \mathbf{u}_{A}\right)[0], 2\right) \\
& =\operatorname{Compress}_{q}\left(\mathbf{v}_{A}[0]-\left(\mathbf{s}_{A}^{\mathrm{tr}} \mathbf{u}_{A}\right)[0], 2\right) \\
& =\left\lceil\frac{2}{q}\left(\left[\frac{9}{32} h\right\rfloor-\mathbf{s}_{A}[0]\left\lceil\frac{9}{32}\right\rfloor\right)\right] \bmod 2 .
\end{aligned}
$$

[^0]
Selecting h for Mismatch Attacks on Kyber1024

Table: $\mathbf{m}^{\prime}[0]$ as a function of $\mathbf{s}_{A}[0]$ for different values of h for Kyber1024.

	$\mathbf{s}_{A}[0]$				
h	-2	-1	0	1	2
7	1	0	0	0	0
8	1	1	0	0	0
9	1	1	1	0	0
10	1	1	1	1	0
22	0	1	1	1	1
23	0	0	1	1	1
24	0	0	0	1	1
25	0	0	0	0	1

Mismatch Attack on Kyber1024 [QZC+21]

Our Mismatch Attacks in Two Dimensions

Allow the values of $\mathbf{m}, \mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{P}_{B}$ to be non-zero for index $i=0$ and/or $i=128$. Alice' and Bob's keys match if and only if $\mathbf{m}^{\prime}[i]$ and $\mathbf{m}[i]$ match for $i=0$ and $i=128 .{ }^{2}$

[^1]
Our Mismatch Attacks in Two Dimensions

Allow the values of $\mathbf{m}, \mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{P}_{B}$ to be non-zero for index $i=0$ and/or $i=128$. Alice' and Bob's keys match if and only if $\mathbf{m}^{\prime}[i]$ and $\mathbf{m}[i]$ match for $i=0$ and $i=128 .{ }^{2}$

- $\mathbf{m}[0]=1$ and/or $\mathbf{m}[128]=1$.
- $\mathbf{P}_{B}[0]=b_{1}\left\lceil\frac{q}{32}\right\rfloor, \mathbf{P}_{B}[128]=b_{2}\left\lceil\frac{q}{32}\right\rfloor, b_{1}, b_{2} \in\{-1,0,1\}$.
- $\mathbf{c}_{1}=\operatorname{Compress}_{q}\left(\mathbf{P}_{B}, 2^{d_{P_{B}}}\right)$
- $\mathbf{c}_{2}[0]=h_{1}, \mathbf{c}_{2}[128]=h_{2}$

[^2]
Our Mismatch Attacks in Two Dim. Cont.

$$
\begin{aligned}
\mathbf{m}^{\prime}[0] & =\operatorname{Compress}_{q}\left(\mathbf{v}_{A}[0]-\left(\mathbf{s}_{A}^{\mathrm{tr}} \mathbf{u}_{A}\right)[0], 2\right) \\
& =\left[\frac{2}{q}\left(\left[\frac{q}{32} h_{1}\right\rfloor-\left(\mathbf{s}_{A}[0] b_{1}\left\lceil\frac{q}{32}\right\rfloor-\mathbf{s}_{A}[128] b_{2}\left\lceil\frac{q}{32}\right\rfloor\right)\right)\right] \bmod 2, \\
\mathbf{m}^{\prime}[128] & =\operatorname{Compress}_{q}\left(\mathbf{v}_{A}[128]-\left(\mathbf{s}_{A}^{\mathrm{tr}} \mathbf{u}_{A}\right)[128], 2\right) \\
& =\left[\frac{2}{q}\left(\left[\frac{q}{32} h_{2}\right\rfloor-\left(\mathbf{s}_{A}[0] b_{2}\left\lceil\frac{q}{32}\right\rfloor+\mathbf{s}_{A}[128] b_{1}\left\lceil\frac{q}{32}\right\rfloor\right)\right)\right] \bmod 2 .
\end{aligned}
$$

Planar Splits

$\mathbf{m}^{\prime}[0]$	-2	-1	0	1	2
-2	1	1	1	0	0
-1	1	1	1	0	0
s_{128}	0	1	1	1	0
	0				
1	1	1	1	0	0
2	1	1	1	0	0

(a) A vertical split.

$\mathbf{m}^{\prime}[0]$	-2	-1	0	1	2
-2	0	0	0	0	0
-1	0	0	0	0	0
s_{128}	0	0	0	0	0
	0				
1	1	1	1	1	1
2	1	1	1	1	1

(b) A horizontal split.

Rectangular Split

	S_{0}				
$\mathbf{m}^{\prime}[0]$	-2	-1	0	1	2
-2	0	0	0	1	1
-1	0	0	0	1	1
$S_{128} 0$	0	0	0	1	1
1	0	0	0	1	1
2	0	0	0	1	1

(a) The vertical cut.

$\mathbf{m}^{\prime}[128]$	S_{0}				
	-2	-1	0	1	2
-2	1	1	1	1	1
-1	1	1	1	1	1
$s_{128} 0$	1	1	1	1	1
1	0	0	0	0	0
2	0	0	0	0	0

(b) The horizontal cut.

m^{\prime}	-2	-1	0	1	2
-2	0	0	0	1	1
-1	0	0	0	1	1
s_{128}	0	0	0	0	1
1	0	0	0	0	0
2	0	0	0	0	0

(c) The rectangular result.

Figure: The cuts with respect to $\mathbf{m}^{\prime}[0], \mathbf{m}^{\prime}[128]$ and $m^{\prime}=\mathbf{m}^{\prime}[0] \& \mathbf{m}^{\prime}[128]$.

Triangular Splits

$\mathbf{m}^{\prime}[0]$	-2	-1	0	1	2
-2	0	1	1	1	1
-1	0	0	1	1	1
s_{128}	0	0	0	0	1
	1				
1	0	0	0	0	1
2	0	0	0	0	0

(a) A triangular cut of the secret values, originating from the upper right corner.

$\mathbf{m}^{\prime}[0]$	-2	-1	0	1	2
-2	1	1	1	1	1
-1	1	1	1	1	1
$s_{128} 0$	1	1	1	1	0
1	1	1	1	0	0
2	1	1	0	0	0

(b) A triangular cut of the secret values, originating from the upper left corner.

Intersecting Triangular Splits

$\mathbf{m}^{\prime}[0]$	-2	-1	0	1	2
-2	1	1	1	1	1
-1	1	1	1	1	1
$s_{128} 0$	1	1	1	1	0
1	1	1	1	0	0
2	1	1	0	0	0

(a) First triangular cut

\mathbf{m}^{\prime} [128]	S_{0}				
	-2	-1	0	1	2
-2	0	1	1	1	1
-1	0	0	1	1	1
$s_{128} 0$	0	0	0	1	1
1	0	0	0	0	1
2	0	0	0	0	0

(b) Second triangular cut

s^{\prime}					-2
\underline{m}^{\prime}	-1	0	1	2	
-2	0	1	1	1	1
-1	0	0	1	1	1
$s_{128} 0$	0	0	0	1	0
1	0	0	0	0	0
2	0	0	0	0	0

(c) The intersection

Figure: The cuts with respect to $\mathbf{m}^{\prime}[0], \mathbf{m}^{\prime}[128]$ and $m^{\prime}=\mathbf{m}^{\prime}[0] \& \mathbf{m}^{\prime}[128]$.

Mismatch Attack on Kyber1024 in Two Dim.

$256 \cdot P\left(s_{0}, s_{128}\right)$	-2	-1	0	1	2	
-2	1	4	6	4	1	
-1	4	16	24	16	4	
	s_{128}	0	6	24	36	24

Mismatch Attack on Kyber1024 in Two Dim.

$256 \cdot P\left(s_{0}, s_{128}\right)$	-2	-1	0	1	2	
-2	1	4	6	4	1	
-1	4	16	24	16	4	
	s_{128}	0	6	24	36	24

Mismatch Attack on Kyber1024 in Two Dim.

$256 \cdot P\left(s_{0}, s_{128}\right)$	-2	-1	0	1	2	
-2	1	4	6	4	1	
-1	4	16	24	16	4	
	s_{128}	0	6	24	36	24

Mismatch Attack on Kyber1024 in Two Dim.

$256 \cdot P\left(s_{0}, s_{128}\right)$	-2	-1	0	1	2	
-2	1	4	6	4	1	
-1	4	16	24	16	4	
	s_{128}	0	6	24	36	24

Mismatch Attack on Kyber1024 in Two Dim.

Results and Comparisons

	Kyber512	Kyber768	Kyber1024	LightSaber	Saber	FireSaber
[QZC+21]	1312	1776	2368	1460	2091	2624
Huffman Bound 1	1216	1632	2176	1412	1986	2432
Our Result 1	$\mathbf{1 2 0 5 . 3}$	$\mathbf{1 5 8 8 . 5}$	$\mathbf{2 1 1 8}$	-	-	$\mathbf{2 4 1 0 . 6}$
Our Result 2	1217.7	1599	2132	$\mathbf{1 4 1 0 . 2}$	$\mathbf{1 9 8 4 . 9}$	2435.4
Huffman Bound 2	1202.1	1575	2100	1395.9	1970.0	2404.3
Huffman Bound 3	1199.9	1569.8	2093.0	1391.7	1962.3	2399.7
Shannon Bound	1195	1560	2079	1386	1954	2389

Mismatch Attack Plus Lattice Reduction ${ }^{3}$

Figure: Complexity to break Kyber1024 as a function of \# mismatch attacks queries.

[^3]
Recent Large Improvement

- In a very recent work ${ }^{4}$ our method got improved - by a lot!

[^4]
Recent Large Improvement

- In a very recent work ${ }^{4}$ our method got improved - by a lot!
- Instead of gaining up to 1 bit per query, the authors can get up to p bits per query, at a computational cost of $\mathcal{O}\left(2^{p}\right)$.

[^5]
Recent Large Improvement

- In a very recent work ${ }^{4}$ our method got improved - by a lot!
- Instead of gaining up to 1 bit per query, the authors can get up to p bits per query, at a computational cost of $\mathcal{O}\left(2^{p}\right)$.
- At a very modest computational cost they reduce the query complexity by around 95% !

[^6]
Recent Large Improvement

- In a very recent work ${ }^{4}$ our method got improved - by a lot!
- Instead of gaining up to 1 bit per query, the authors can get up to p bits per query, at a computational cost of $\mathcal{O}\left(2^{p}\right)$.
- At a very modest computational cost they reduce the query complexity by around 95% !
- The main reviewer complaint about our paper was its incremental improvement interestingly it inspired a method for a huge improvement!

[^7]
Recent Large Improvement

- In a very recent work ${ }^{4}$ our method got improved - by a lot!
- Instead of gaining up to 1 bit per query, the authors can get up to p bits per query, at a computational cost of $\mathcal{O}\left(2^{p}\right)$.
- At a very modest computational cost they reduce the query complexity by around 95% !
- The main reviewer complaint about our paper was its incremental improvement interestingly it inspired a method for a huge improvement!
- Their attack is similar to (and applies to) parallel PC oracle attacks [GPDA+23,TUX23]

[^8]
Open Questions

- Can the recent improvement of our work ${ }^{5}$ be further improved?

5https://eprint.iacr.org/2023/887
College Park, August 17

Open Questions

- Can the recent improvement of our work ${ }^{5}$ be further improved?
- What can be achieved for other lattice-based schemes like NewHope, Frodo, etc.?

5https://eprint.iacr.org/2023/887

[^0]: ${ }^{1}$ Minor tweaks make it possible for Eve to find $\mathbf{s}_{A}[i]$, for $i \neq 0$.

[^1]: ${ }^{2}$ Minor tweaks make it possible for Eve to find $\mathbf{s}_{A}[i]$ and $\mathbf{s}_{A}[i+128]$, for $i \neq 0$.

[^2]: ${ }^{2}$ Minor tweaks make it possible for Eve to find $\mathbf{s}_{A}[i]$ and $\mathbf{s}_{A}[i+128]$, for $i \neq 0$.

[^3]: ${ }^{3}$ Studied concurrently and independently in https://eprint.iacr.org/2022/1064.

[^4]: 4https://eprint.iacr.org/2023/887

[^5]: 4https://eprint.iacr.org/2023/887

[^6]: 4https://eprint.iacr.org/2023/887

[^7]: 4https://eprint.iacr.org/2023/887

[^8]: 4https://eprint.iacr.org/2023/887

