New NTRU Records with Improved Lattice Bases

PQCrypto'23

Elena Kirshanova^{1,3} Alexander May ² Julian Nowakowski ²

¹ Technology Innovation Institute, Abu Dhabi, UAE

² Ruhr-University Bochum, Bochum, Germany

³ I.Kant Baltic Federal University, Kaliningrad, Russia

https://ia.cr/2023/582

NTRU:

- First practical lattice-based cryptosystem.
- Most NIST PQC standards are heavily influenced by NTRU.

NTRU:

- First practical lattice-based cryptosystem.
- Most NIST PQC standards are heavily influenced by NTRU.

Progress in theoretical NTRU cryptanalysis:

• [ABD16,KF17,DvW21]: Discovery of the overstretched NTRU regime.

[ABD16]: Albrecht, Bai, Ducas. A subfield lattice attack on overstretched NTRU assumptions. CRYPTO'16.

[KF17]: Kirchner, Fouque. Revisiting Lattice Attacks on Overstretched NTRU Parameters. EUROCRYPT'17.

[DvW21]: Ducas, van Woerden. NTRU Fatigue: How Stretched is Overstretched? ASIACRYPT'21.

NTRU:

- First practical lattice-based cryptosystem.
- Most NIST PQC standards are heavily influenced by NTRU.

Progress in theoretical NTRU cryptanalysis:

• [ABD16,KF17,DvW21]: Discovery of the overstretched NTRU regime.

Progress in implementation of lattice algorithms:

• [ADH+19]: G6K library, first practical implementation of sieving algorithms.

[ABD16]: Albrecht, Bai, Ducas. A subfield lattice attack on overstretched NTRU assumptions. CRYPTO'16.

[KF17]: Kirchner, Fouque. Revisiting Lattice Attacks on Overstretched NTRU Parameters. EUROCRYPT'17.

[DvW21]: Ducas, van Woerden. NTRU Fatigue: How Stretched is Overstretched? ASIACRYPT'21.

[a] [ADH+19]: Albrecht, Ducas, Herold, Kirshanova, Postlethwaite, Stevens. The General Sieve Kernel and New Records in Lattice Reduction. EUROCRYPT'19.

NTRU:

- First practical lattice-based cryptosystem.
- Most NIST PQC standards are heavily influenced by NTRU.

Progress in theoretical NTRU cryptanalysis:

• [ABD16,KF17,DvW21]: Discovery of the overstretched NTRU regime.

Progress in implementation of lattice algorithms:

• [ADH+19]: G6K library, first practical implementation of sieving algorithms.

[ABD16]: Albrecht, Bai, Ducas. A subfield lattice attack on overstretched NTRU assumptions. CRYPTO'16.

[KF17]: Kirchner, Fouque. Revisiting Lattice Attacks on Overstretched NTRU Parameters. EUROCRYPT'17.

[DvW21]: Ducas, van Woerden. NTRU Fatigue: How Stretched is Overstretched? ASIACRYPT'21.

[a] [ADH+19]: Albrecht, Ducas, Herold, Kirshanova, Postlethwaite, Stevens. The General Sieve Kernel and New Records in Lattice Reduction. EUROCRYPT'19.

Our work:

- Open source G6K-based Python implementation for attacking NTRU.
- New record computations. (For both overstretched and non-overstretched NTRU.)
- New lattice bases, that significantly improve the performance of attacks. In Topic of this talk.

Parameters:

- $n, q \in \mathbb{N}$,
- $\Phi \in \mathbb{Z}[X]$, deg $\Phi = n$,
- ring $R := \mathbb{Z}[X]/(\Phi)$,
- length bound $\sigma > 0$.

Parameters:

- $n, q \in \mathbb{N}$,
- $\Phi \in \mathbb{Z}[X]$, deg $\Phi = n$,
- ring $R := \mathbb{Z}[X]/(\Phi)$,
- length bound $\sigma > 0$.

NTRU Problem

Given:

• $h \in R$.

Find:

• $f, g \in R \setminus \{0\}$, such that 1. $g \equiv fh \mod q$, 2. $||f||, ||g|| \leq \sigma \sqrt{n}$.

$$\mathbb{IGF}\left|\left|\sum_{i}a_{i}X^{i}\right|\right|:=\sqrt{\sum_{i}a_{i}^{2}}.$$

Parameters:

- $n, q \in \mathbb{N}$,
- $\Phi \in \mathbb{Z}[X]$, deg $\Phi = n$,
- ring $R := \mathbb{Z}[X]/(\Phi)$,
- length bound $\sigma > 0$.

NTRU Problem

Given:

• $h \in R$.

Find:

• $f, g \in R \setminus \{0\}$, such that 1. $g \equiv fh \mod q$, 2. $||f||, ||g|| \le \sigma \sqrt{n}$.

$$\mathbb{IP}\left\|\sum_{i}a_{i}X^{i}\right\| := \sqrt{\sum_{i}a_{i}^{2}}.$$

NTRU as a Lattice Problem [CS'97]:

• Identify ring elements $a \in R$ with their coefficient vectors

 $a_0+\ldots+a_{n-1}X^{n-1}\simeq (a_0,\ldots,a_{n-1})\in\mathbb{Z}^n.$

• Gives rise to a lattice:

$$\mathcal{L} = \left\{ (g, f) \in R^2 \mid g \equiv \textit{fh} \mod q \right\} \subseteq \mathbb{Z}^{2n}.$$

[CS'97]: Coppersmith, Shamir. Lattice Attacks on NTRU. EUROCRYPT'97.

Parameters:

- $n, q \in \mathbb{N}$,
- $\Phi \in \mathbb{Z}[X]$, deg $\Phi = n$,
- ring $R := \mathbb{Z}[X]/(\Phi)$,
- length bound $\sigma > 0$.

NTRU Problem

Given:

• $h \in R$.

Find:

• $f, g \in R \setminus \{0\}$, such that 1. $g \equiv fh \mod q$, 2. $||f||, ||g|| \le \sigma \sqrt{n}$.

ľ

$$\mathcal{L} = \{(g, f)\}$$

Attack strategy:

• Run BKZ lattice reduction algorithm on \mathcal{L} to obtain $\mathbf{v} \in \mathcal{L}$ with $\|\mathbf{v}\| \leq \sigma \sqrt{2n}$.

CS'97]: Coppersmith, Shamir. Lattice Attacks on NTRU. EUROCRYPT'97.

$$\mathbb{P}\left|\left|\sum_{i}a_{i}X^{i}\right|\right| := \sqrt{\sum_{i}a_{i}^{2}}.$$

NTRU as a Lattice Problem [CS'97]:

Identify ring elements *a* ∈ *R* with their coefficient vectors

 $a_0+\ldots+a_{n-1}X^{n-1}\simeq (a_0,\ldots,a_{n-1})\in \mathbb{Z}^n.$

Gives rise to a lattice:

$$\mathcal{L} = \left\{ (g, f) \in R^2 \mid g \equiv \textit{fh} \ \mathsf{mod} \ q \right\} \subseteq \mathbb{Z}^{2n}$$

Parameters:

- $n, q \in \mathbb{N}$,
- $\Phi \in \mathbb{Z}[X]$, deg $\Phi = n$,
- ring $R := \mathbb{Z}[X]/(\Phi)$,
- length bound $\sigma > 0$.

NTRU Problem

Given:

• $h \in R$.

Find:

• $f, g \in R \setminus \{0\}$, such that 1. $g \equiv fh \mod q$, 2. $||f||, ||g|| \le \sigma \sqrt{n}$.

$$\mathbb{G}^{\mathbb{G}}\left\|\sum_{i}a_{i}X^{i}\right\|:=\sqrt{\sum_{i}a_{i}^{2}}.$$

NTRU as a Lattice Problem [CS'97]:

Identify ring elements *a* ∈ *R* with their coefficient vectors

 $a_0+\ldots+a_{n-1}X^{n-1}\simeq (a_0,\ldots,a_{n-1})\in \mathbb{Z}^n.$

• Gives rise to a lattice:

$$\mathcal{L} = \left\{ (g, f) \in R^2 \mid g \equiv \textit{fh} \mod q \right\} \subseteq \mathbb{Z}^{2n}.$$

Attack strategy:

- Run BKZ lattice reduction algorithm on *L* to obtain **v** ∈ *L* with ||**v**|| ≤ σ√2n.
- Complexity mainly depends on:
 - 1. the lattice dimension d = 2n,
 - 2. the lattice gap

$$\frac{\|\mathbf{v}\|}{\sqrt{d}(\det \mathcal{L})^{1/d}} \leq \frac{\sigma}{\sqrt{q}}.$$

CS'97]: Coppersmith, Shamir. Lattice Attacks on NTRU. EUROCRYPT'97.

• Typical NTRU ring:
$$R = \mathbb{Z}[X]/(X^n - 1)$$
.
• $X^n - 1 = \underbrace{(X - 1)}_{=:\Phi_1} \underbrace{(X^{n-1} + X^{n-2} + \ldots + 1)}_{=:\Phi_n}$.
Chinese Remainder Theorem
If

$$g \equiv fh \mod (q, X^n - 1)$$

then

$$g \equiv fh \mod (q, \Phi_1),$$

 $g \equiv fh \mod (q, \Phi_n).$

• Typical NTRU ring:
$$R = \mathbb{Z}[X]/(X^n - 1)$$
.
• $X^n - 1 = \underbrace{(X - 1)}_{=:\Phi_1} \underbrace{(X^{n-1} + X^{n-2} + \ldots + 1)}_{=:\Phi_n}$.

Chinese Remainder Theorem

lf

$$g \equiv fh \mod (q, X^n - 1)$$

then

 $g \equiv fh \mod (q, \Phi_1),$ $g \equiv fh \mod (q, \Phi_n).$

Idea:

- Solve the induced NTRU problem over ℤ[X]/(Φ₁) or ℤ[X]/(Φ_n).
- Lift to solution over $\mathbb{Z}[X]/(X^n-1)$.

• Typical NTRU ring:
$$R = \mathbb{Z}[X]/(X^n - 1)$$
.
• $X^n - 1 = \underbrace{(X - 1)}_{=:\Phi_1} \underbrace{(X^{n-1} + X^{n-2} + \ldots + 1)}_{=:\Phi_n}$.
Chinese Remainder Theorem
If
 $g \equiv fh \mod (q, X^n - 1),$

then

 $g \equiv fh \mod (q, \Phi_1),$ $g \equiv fh \mod (q, \Phi_n).$

Idea:

- Solve the induced NTRU problem over $\mathbb{Z}[X]/(\Phi_1)$ or $\mathbb{Z}[X]/(\Phi_n)$.
- Lift to solution over $\mathbb{Z}[X]/(X^n-1)$.

	$Mod\ \Phi_1$	Mod Φ _n
Solving	Easy	???
Lifting	Difficult	Easy

• Typical NTRU ring:
$$R = \mathbb{Z}[X]/(X^n - 1)$$
.

•
$$X^n - 1 = \underbrace{(X - 1)}_{=:\Phi_1} \underbrace{(X^{n-1} + X^{n-2} + \ldots + 1)}_{=:\Phi_n}$$
.

Chinese Remainder Theorem

lf

$$g \equiv fh \mod (q, X^n - 1),$$

then

$$g \equiv fh \mod (q, \Phi_1),$$

 $g \equiv fh \mod (q, \Phi_n).$

Idea:

- Solve the induced NTRU problem over $\mathbb{Z}[X]/(\Phi_1)$ or $\mathbb{Z}[X]/(\Phi_n)$.
- Lift to solution over $\mathbb{Z}[X]/(X^n-1)$.

	Mod Φ_1	Mod Φ_n
Solving	Easy	???
Lifting	Difficult	Easy

Is solving mod Φ_n easier than mod $X^n - 1$?

- Intuitively, yes:
 - 1. Lattice dimension decreases by 2.
 - 2. Lattice gap does not change.
- [DDGR20] estimator disagrees.

[] [DDGR'20]: Dachman-Soled, Ducas, Gong, Rossi. LWE with Side Information: Attacks and Concrete Security Estimation. CRYPTO'20.

NTRU with $X^n - 1$:

• For every $i \in \mathbb{N}$, we have

$$\|X^{i} \cdot g\| = \|g\|$$
 and $\|X^{i} \cdot f\| = \|f\|$

$$\mathbb{I} X^n \equiv 1 \mod (X^n - 1).$$

NTRU with $X^n - 1$:

• For every $i \in \mathbb{N}$, we have

$$\|X^i \cdot g\| = \|g\|$$
 and $\|X^i \cdot f\| = \|f\|$

 $\mathbb{I} \cong X^n \equiv 1 \mod (X^n - 1).$

• The NTRU problem has *n* solutions

 $X^i \cdot g \equiv (X^i \cdot f) \cdot h \mod (q, X^n - 1),$

where i = 0, ..., n - 1.

NTRU with $X^n - 1$:

• For every $i \in \mathbb{N}$, we have

$$\|X^i \cdot g\| = \|g\|$$
 and $\|X^i \cdot f\| = \|f\|$

 $\mathbb{I} \cong X^n \equiv 1 \mod (X^n - 1).$

• The NTRU problem has *n* solutions

$$X^i \cdot g \equiv (X^i \cdot f) \cdot h \mod (q, X^n - 1),$$

where i = 0, ..., n - 1.

[DDGR20]

Presence of many solutions increases success probability of BKZ.

[DDGR'20]: Dachman-Soled, Ducas, Gong, Rossi. LWE with Side Information: Attacks and Concrete Security Estimation. CRYPTO'20.

NTRU with $X^n - 1$:

• For every $i \in \mathbb{N}$, we have

 $||X^{i} \cdot g|| = ||g||$ and $||X^{i} \cdot f|| = ||f||$.

 $\mathbb{I} \cong X^n \equiv 1 \mod (X^n - 1).$

• The NTRU problem has n solutions

$$X^i \cdot g \equiv (X^i \cdot f) \cdot h \mod (q, X^n - 1),$$

where i = 0, ..., n - 1.

[DDGR20]

Presence of many solutions increases success probability of BKZ.

DDGR'20]: Dachman-Soled, Ducas, Gong, Rossi. LWE with Side Information: Attacks and Concrete Security Estimation. CRYPTO'20. **NTRU** with $\Phi_n = X^{n-1} + X^{n-2} + \ldots + X + 1$:

NTRU with $X^n - 1$:

• For every $i \in \mathbb{N}$, we have

 $||X^{i} \cdot g|| = ||g||$ and $||X^{i} \cdot f|| = ||f||$.

 $\mathbb{I} X^n \equiv 1 \mod (X^n - 1).$

• The NTRU problem has *n* solutions

$$X^i \cdot g \equiv (X^i \cdot f) \cdot h \mod (q, X^n - 1)$$

where i = 0, ..., n - 1.

[DDGR20]

Presence of many solutions increases success probability of BKZ.

DDGR'20]: Dachman-Soled, Ducas, Gong, Rossi. LWE with Side Information: Attacks and Concrete Security Estimation. CRYPTO'20. NTRU with $\Phi_n = X^{n-1} + X^{n-2} + \ldots + X + 1$: • For n = 5 and $f = 1 + X + X^2 - X^3$, we have $X \cdot f \mod \Phi_n = 2X^3 + 2X^2 + 2X + 1$.

•
$$||f|| = \sqrt{4} = 2$$
, but $||X \cdot f|| = \sqrt{13} \approx 3.6$.

NTRU with $X^n - 1$:

• For every $i \in \mathbb{N}$, we have

 $||X^{i} \cdot g|| = ||g||$ and $||X^{i} \cdot f|| = ||f||$.

 $\mathbb{I} X^n \equiv 1 \mod (X^n - 1).$

• The NTRU problem has n solutions

 $X^i \cdot g \equiv (X^i \cdot f) \cdot h \mod (q, X^n - 1),$

where i = 0, ..., n - 1.

[DDGR20]

Presence of many solutions increases success probability of BKZ.

DDGR'20]: Dachman-Soled, Ducas, Gong, Rossi. LWE with Side Information: Attacks and Concrete Security Estimation. CRYPTO'20. NTRU with $\Phi_n = X^{n-1} + X^{n-2} + \ldots + X + 1$: • For n = 5 and $f = 1 + X + X^2 - X^3$, we have

$$X \cdot f \mod \Phi_n = 2X^3 + 2X^2 + 2X + 1.$$

•
$$||f|| = \sqrt{4} = 2$$
, but $||X \cdot f|| = \sqrt{13} \approx 3.6$.

• By changing the ring, we lose solutions.

NTRU with $X^n - 1$:

• For every $i \in \mathbb{N}$, we have

 $||X^{i} \cdot g|| = ||g||$ and $||X^{i} \cdot f|| = ||f||$.

 $\mathbb{I} X^n \equiv 1 \mod (X^n - 1).$

• The NTRU problem has n solutions

$$X^i \cdot g \equiv (X^i \cdot f) \cdot h \mod (q, X^n - 1)$$

where i = 0, ..., n - 1.

[DDGR20]

Presence of many solutions increases success probability of BKZ.

DDGR'20]: Dachman-Soled, Ducas, Gong, Rossi. LWE with Side Information: Attacks and Concrete Security Estimation. CRYPTO'20. **NTRU with** $\Phi_n = X^{n-1} + X^{n-2} + \ldots + X + 1$: • For n = 5 and $f = 1 + X + X^2 - X^3$, we have

$$X \cdot f \mod \Phi_n = 2X^3 + 2X^2 + 2X + 1.$$

•
$$||f|| = \sqrt{4} = 2$$
, but $||X \cdot f|| = \sqrt{13} \approx 3.6$.

• By changing the ring, we lose solutions.

[DDGR20]

Benefits of decreasing lattice dimension are outweighed by decrease in success probability.

Projecting keeps solutions small

 $\|\pi(X^i \cdot f)\| \le \|\widetilde{f}^{(i)}\| \le \|f\|$ for every $i \in \mathbb{N}$.

Projecting keeps solutions small

 $\|\pi(X^i \cdot f)\| \le \|\widetilde{f}^{(i)}\| \le \|f\|$ for every $i \in \mathbb{N}$.

Experimental Results for NTRU-HPS with q = 512

Experimental Results for NTRU-HPS with q = 512

Takeaways:

- Choosing R = ℤ[X]/(Xⁿ − 1) in NTRU allows to decrease the lattice dimension by 4.
- No asymptotic improvements.
- But huge gain in practical runtime.

Takeaways:

- Choosing R = ℤ[X]/(Xⁿ − 1) in NTRU allows to decrease the lattice dimension by 4.
- No asymptotic improvements.
- But huge gain in practical runtime.
- Attack not applicable to FALCON, which uses irreducible $X^n + 1$ with $n = 2^k$.

Takeaways:

- Choosing R = ℤ[X]/(Xⁿ − 1) in NTRU allows to decrease the lattice dimension by 4.
- No asymptotic improvements.
- But huge gain in practical runtime.
- Attack not applicable to FALCON, which uses irreducible $X^n + 1$ with $n = 2^k$.

More in the paper:

- Open source implementation for attacking NTRU with sieving.
- New record computations.
- Attacks on overstretched NTRU-HRSS, up to n = 211 with BKZ blocksize $\beta = 93$.
- Record computation for Security Innovations, Inc. NTRU challenges with n = 181 and $\beta = 109$. (≈ 20 core years.)
- Paper: https://ia.cr/2023/582
- Code: https://github.com/ ElenaKirshanova/ntru_with_sieving

Takeaways:

- Choosing R = ℤ[X]/(Xⁿ − 1) in NTRU allows to decrease the lattice dimension by 4.
- No asymptotic improvements.
- But huge gain in practical runtime.
- Attack not applicable to FALCON, which uses irreducible $X^n + 1$ with $n = 2^k$.

More in the paper:

- Open source implementation for attacking NTRU with sieving.
- New record computations.
- Attacks on overstretched NTRU-HRSS, up to n = 211 with BKZ blocksize $\beta = 93$.
- Record computation for Security Innovations, Inc. NTRU challenges with n = 181 and $\beta = 109$. (≈ 20 core years.)
- Paper: https://ia.cr/2023/582
- Code: https://github.com/ ElenaKirshanova/ntru_with_sieving

Want to do your own record computations?

• https://bochum-challeng.es