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PQC Signatures
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Winners:

• 3 algorithms

• 2 types of cryptography

New Candidates:

• 40 algorithms

• 7+ types



LESS
• LESS (Linear Equivalence Signature Scheme):

• Code-based algorithm based on the difficulty of the linear equivalence 
problem

• Constructed using Fiat-Shamir 

• Main elements are large matrices with elements in 𝐹𝑞

• Core Operation: RREF( RREF(Generator) x Monomial Matrix )
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𝑅𝑅𝐸𝐹(𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟) 𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙 
𝑀𝑎𝑡𝑟𝑖𝑥



Background - RREF

Reduced Row Echelon Form (RREF):

A matrix is said to be in RREF if:
1. Rows with only zeros are at the bottom of 

the matrix

2. The leftmost non-zero (leading) entry of 
each row is to the right of the leading 
entry of all rows above it

3. All leading entries are 1

4. Each column containing a leading 1 has 
zeros in all other entries

The leading entries are also referred to as 
“pivots” and the corresponding columns 
as “pivot columns”
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Example of a matrix in RREF. 

Pivots are in green.



Background – Monomial Matrix

Monomial Matrix:

A monomial matrix is a combination of a 
scalar matrix and a permutation matrix. 

Each column and row have only one non-
zero entry which is in 𝐹𝑞

∗. The set of 

monomial matrices is referred to as 𝑀𝑛.
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Background – Generator Matrix and LEP

Generator Matrix:

A generator matrix is a matrix whose rows form the 
basis for a linear code. So, for generator 𝐺 of code 
𝐶, the codeword c of message m is calculated by:

𝑐 = 𝑚𝐺
Two generator matrices are said to be linearly 
equivalent if there exist a monomial matrix Q and an 
invertible matrix S, such that

 𝐺′ =  𝑆𝐺𝑄
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Linear Equivalence Problem: Given G’ and G, it is difficult to find Q



LEP Sigma Identification Protocol
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Difficulty can be increased by performing multiple rounds or by using multiple keypairs



LESS Key Generation (Simplified)
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• Each keypair is an instance of LEP

• Multiple keypairs can be used to lower number of rounds needed

• First keypair is trivial keypair (𝐼𝑘 , 𝐺0) 

• 𝑠 − 1 additional keypairs generated

𝒔 − 𝟏 RREF 

Operations



LESS Sign Part 1 (Simplified)

10

𝒕 RREF Operations



LESS Sign Part 2 (Simplified)
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𝝎 non-zero 

entries



LESS Verify (Simplified)
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𝒕 RREF 

Operations



LESS Parameters
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NIST
Security

Level

Parameter
Set

Code 
Parameters

n k q

1 LESS-1b

252 126 127LESS-1i

LESS-1s

3 LESS-3b
400 200 127

LESS-3s

5 LESS-5b
548 274 127

LESS-5s

𝑠 → “Short” - minimize Sig size
𝑏 → “Balanced” -  minimize PK + Sig size
𝑖 → “Intermediate” – in between 𝑏 and 𝑠



LESS Parameters
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NIST
Security

Level

Paramete
r

Set

Protocol 
Parameters

𝑡 𝜔 𝑠

1 LESS-1b 247 30 2

LESS-1i 244 20 4

LESS-1s 198 17 8

3 LESS-3b 759 33 2

LESS-3s 895 26 3

5 LESS-5b 1352 40 2

LESS-5s 907 37 3

The first keypair 
is [𝐼𝑘 , 𝐺0]



LESS Parameters

In LESS:

•  Signature size ↗ when 𝑘↗, 𝑡↗ and 𝜔↗

•  Public key size ↗ when 𝑛↗, 𝑘↗, and 𝑠↗

•  Secret key size is independent of parameters

In this architecture:

•  Area ↗ to 𝑛 ↗

•  Keygen Cycle Latency ↗ when 𝑘↗ and 𝑠↗

•  Sign/Verify Cycle Latency ↗ when 𝑘↗and 𝑡↗
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Top-Level Architecture
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~60% of the resources
~75% of the latency



RREF
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Operation to convert an input 
matrix to RREF

All arithmetic operations performed 
modulo q = 7



RREF – Example
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n = 7

k = 3

q = 7

Row to reduce = 0



RREF – Example
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n = 7

k = 3

q = 7

Row to reduce = 1



RREF – Example
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n = 7

k = 3

q = 7

Row to reduce = 2



RREF – Algorithm

• Four major operations:
1. Pivot Search

2. Row Swap

3. Rescale Pivot Row

4. Reduce Other Rows

• Opportunities for parallelization:

1. Arithmetic performed on entire row

2. Pivot Search while Reduce Other 
Rows

3. Row operations in Reduce Other 
Rows are independent of each 
other

• Constant-time implementation
21

Pivot Search

Rescale Pivot Row

Reduce Other Rows



RREF – Operational Flow
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Latency (clock cycles) = k2 + 3k + 58
(including implemented pipeline stages,

not including I/O)



RREF – Column Memory
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• n RAMs to hold one 
column of the matrix, each

• Parallel memory units to 
access entire row of matrix 
in one cycle

• Address translation tables 
for constant time 
conditional row swap

• Separate input and output 
ports



RREF – Row Arithmetic
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• Hardware re-use for 
Rescale Pivot Row and 
Reduce Other Rows

• Parallel arithmetic units to 
operate on entire row at a 
time.

• Long feed forward critical 
path – good for pipelining

• Registers to hold result 
from Rescale Pivot Row to 
be used during Reduce Other 
Rows



RREF – Row Arithmetic – Rescale Pivot Row
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n=7

k=3

q=7



RREF – Row Arithmetic – Reduce Other Rows

26

n=7

k=3

q=7



RREF – Row Arithmetic Pipeline
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NIST 
Security 

Level
n k

Frequency 
(MHz)

1 252 126 200

3 400 200 167

5 548 274 142

• Enables higher clock 
frequency

• Generates new result every 
clock cycle

• Increases flip-flop utilization



RREF – Results 
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• Area ~ n

• n↗ Frequency↘

• Latency (Cycles) ~ k2

NIST 
Security 

Level
n k

Frequency 
(MHz)

1 252 126 200

3 400 200 167

5 548 274 142



Improvement Over AVX2 [Level 5]
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TW (Hardware):
Evaluated on Artix-7

AVX2 (Software):
Evaluated on Ryzen 5 5600G 
running @3.9 GHz 
𝟐𝟕. 𝟑 × higher frequency 
than HW

HW is faster by a factor of 
•  1.4x for Keygen
•  2.5x for Sign and Verify



Transmission Cost [Level 5]

30

Lattices have the 
smallest sizes

LESS has smaller 
signatures than 
SPHINCS+, but much 
larger public keys



Latency [Level 5]
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Compared to 

SPHINCS+

Order of magnitude 

slower signing

Several orders of 

magnitude slower for 

verification



Area [Level 5]
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Compared to 

SPHINCS+

2 × more LUTs

Similar number of 

DSP/FF

6 × more BRAM



Conclusion

• This work represents the first hardware work on the new 
candidate LESS

• Our implementation running on an Artix-7 FPGA 
outperforms optimized AVX2 by ~2 ×

•  LESS provides smaller signature sizes than SPHINCS+, but 
at the cost of larger public keys and slower 
signing/verification
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Questions?

https://cryptography.gmu.edu/athena
Page: PQC

https://cryptography.gmu.edu/athena
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RREF – Top-Level Unit
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• Operates on entire row of the 
input matrix at a time

• Constant time Pivot Search 
implementation

• Parallel Pivot Search with 
initialization and Reduce Other 
Rows

• Pipelined arithmetic for 
increased clock frequency and 
high throughput



RREF – Pivot Search
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• Constant-time search 
hardware

• Search area decreases as 
algorithm progresses

• Parallel units to identify the 
non-zero element in every 
column of a row

• Large priority encoder to 
identify "left-most" non-zero 
element in search area as pivot 
element



Linear Equivalence Problem

Linear Equivalence Problem (LEP):

Given two matrices 𝐺, 𝐺′ ∈ 𝐹𝑞
𝑘×𝑛 which generate codes 𝐶, 𝐶′, determine if the 

two corresponding codes are linearly equivalent. That is, does there exist 
matrices 𝑄 ∈ 𝑀𝑛 and 𝑆 ∈ 𝐺𝐿(𝑘) such that  𝐺′ = 𝑆𝐺𝑄 where 𝐺𝐿(𝑘) is the set of  
invertible matrices.
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𝐺
Generator 

Matrix

𝐺’ = 𝑆𝐺𝑄
𝑄

Monomial Matrix
𝑆

Invertible Matrix



Introduction: LESS Optimizations

Commitment Seed Tree:

• Commitment matrices are sampled using a leaf of a 
tree as the seed

•  Benefit: Rather than sending the seeds of all zero-
challenges ( ෨𝑄), we can send the path nodes needed 
to generate them

Information Sets:

• For nonzero-challenges (𝑄−1 × ෨𝑄 ̃), send only the 𝑘 
columns of the monomial which are needed to 
calculate the pivot columns of the commitment 

• Non-pivot columns are minimized and sorted to 
account for lack of scaling/permuting

•  Benefit: Cost of non-zero transmissions is cut in half
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Example of path nodes saving 

transmission cost in seed tree



Computational Bottlenecks: 
Conversion to RREF:

• Requires 𝑘2 ∗ 𝑛 operations

• ~80% of the latency in software

Column Sorting:

• Non-pivot columns are sorted before 
hashing commitment

• Column-wise sorting requires 
transposition before and afterwards for 
optimal performance

Generator Sampling:

• On-the-fly sampling used to reduce BRAM 
requirement

• 𝐾2 coefficients (up to 75K) coefficients 
needed
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Conversion to RREF

Column sorted using element-wise 

comparison



Results
Hardware Comparison Platform:

• Device: Artix-7 FPGAs

• Area: LUTs, FFs, DSP, BRAM

• Performance: Latency in 𝜇𝑠
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Algorithm Designer Platform Parameter
Set

Selection

Keygen Sign Verify

LESS TW

Artix-7 FPGA

Synthesis Yes Yes Yes

SPHINCS+ Amiet Synthesis No Yes Yes

Dilithium Zhao Runtime Yes Yes Yes

FALCON Beckwith Synthesis No No Yes

TW → This Work

Software Comparison Platform:

• Device:  Ryzen 5 5600G

• Implementation: AVX2

• Performance: Latency in 𝜇𝑠



Area [Level 1]
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AVX2 Comparison [Level 1]
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Latency [Level 1]
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Transmission Cost [Level 1]
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AVX2 Comparison [Level 3]

46



Area [Level 3]
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Latency [Level 3]
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Transmission Cost [Level 3]
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