
A High-Performance Hardware
Implementation of the LESS
Digital Signature Scheme

Luke Beckwith1,2, Robert Wallace1, Kamyar Mohajerani1, and Kris Gaj1

(1) Cryptographic Engineering Research Group (CERG) at George Mason University

(2) PQSecure Technologies

Outline

• Brief overview of PQC status

• Introduction to LESS

• Mathematical background

• Algorithm details

• Parameters

• Hardware architecture

• Top-level structure

• Details of RREF implementation

• Results and comparison

2

PQC Signatures

3

Winners:

• 3 algorithms

• 2 types of cryptography

New Candidates:

• 40 algorithms

• 7+ types

LESS
• LESS (Linear Equivalence Signature Scheme):

• Code-based algorithm based on the difficulty of the linear equivalence
problem

• Constructed using Fiat-Shamir

• Main elements are large matrices with elements in 𝐹𝑞

• Core Operation: RREF(RREF(Generator) x Monomial Matrix)

4

𝑅𝑅𝐸𝐹(𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟) 𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙
𝑀𝑎𝑡𝑟𝑖𝑥

Background - RREF

Reduced Row Echelon Form (RREF):

A matrix is said to be in RREF if:
1. Rows with only zeros are at the bottom of

the matrix

2. The leftmost non-zero (leading) entry of
each row is to the right of the leading
entry of all rows above it

3. All leading entries are 1

4. Each column containing a leading 1 has
zeros in all other entries

The leading entries are also referred to as
“pivots” and the corresponding columns
as “pivot columns”

5

Example of a matrix in RREF.

Pivots are in green.

Background – Monomial Matrix

Monomial Matrix:

A monomial matrix is a combination of a
scalar matrix and a permutation matrix.

Each column and row have only one non-
zero entry which is in 𝐹𝑞

∗. The set of

monomial matrices is referred to as 𝑀𝑛.

6

Background – Generator Matrix and LEP

Generator Matrix:

A generator matrix is a matrix whose rows form the
basis for a linear code. So, for generator 𝐺 of code
𝐶, the codeword c of message m is calculated by:

𝑐 = 𝑚𝐺
Two generator matrices are said to be linearly
equivalent if there exist a monomial matrix Q and an
invertible matrix S, such that

 𝐺′ = 𝑆𝐺𝑄

7

Linear Equivalence Problem: Given G’ and G, it is difficult to find Q

LEP Sigma Identification Protocol

8

Difficulty can be increased by performing multiple rounds or by using multiple keypairs

LESS Key Generation (Simplified)

9

• Each keypair is an instance of LEP

• Multiple keypairs can be used to lower number of rounds needed

• First keypair is trivial keypair (𝐼𝑘 , 𝐺0)

• 𝑠 − 1 additional keypairs generated

𝒔 − 𝟏 RREF

Operations

LESS Sign Part 1 (Simplified)

10

𝒕 RREF Operations

LESS Sign Part 2 (Simplified)

11

𝝎 non-zero

entries

LESS Verify (Simplified)

12

𝒕 RREF

Operations

LESS Parameters

13

NIST
Security

Level

Parameter
Set

Code
Parameters

n k q

1 LESS-1b

252 126 127LESS-1i

LESS-1s

3 LESS-3b
400 200 127

LESS-3s

5 LESS-5b
548 274 127

LESS-5s

𝑠 → “Short” - minimize Sig size
𝑏 → “Balanced” - minimize PK + Sig size
𝑖 → “Intermediate” – in between 𝑏 and 𝑠

LESS Parameters

14

NIST
Security

Level

Paramete
r

Set

Protocol
Parameters

𝑡 𝜔 𝑠

1 LESS-1b 247 30 2

LESS-1i 244 20 4

LESS-1s 198 17 8

3 LESS-3b 759 33 2

LESS-3s 895 26 3

5 LESS-5b 1352 40 2

LESS-5s 907 37 3

The first keypair
is [𝐼𝑘 , 𝐺0]

LESS Parameters

In LESS:

• Signature size ↗ when 𝑘↗, 𝑡↗ and 𝜔↗

• Public key size ↗ when 𝑛↗, 𝑘↗, and 𝑠↗

• Secret key size is independent of parameters

In this architecture:

• Area ↗ to 𝑛 ↗

• Keygen Cycle Latency ↗ when 𝑘↗ and 𝑠↗

• Sign/Verify Cycle Latency ↗ when 𝑘↗and 𝑡↗

15

Top-Level Architecture

16

~60% of the resources
~75% of the latency

RREF

17

Operation to convert an input
matrix to RREF

All arithmetic operations performed
modulo q = 7

RREF – Example

18

n = 7

k = 3

q = 7

Row to reduce = 0

RREF – Example

19

n = 7

k = 3

q = 7

Row to reduce = 1

RREF – Example

20

n = 7

k = 3

q = 7

Row to reduce = 2

RREF – Algorithm

• Four major operations:
1. Pivot Search

2. Row Swap

3. Rescale Pivot Row

4. Reduce Other Rows

• Opportunities for parallelization:

1. Arithmetic performed on entire row

2. Pivot Search while Reduce Other
Rows

3. Row operations in Reduce Other
Rows are independent of each
other

• Constant-time implementation
21

Pivot Search

Rescale Pivot Row

Reduce Other Rows

RREF – Operational Flow

22

Latency (clock cycles) = k2 + 3k + 58
(including implemented pipeline stages,

not including I/O)

RREF – Column Memory

23

• n RAMs to hold one
column of the matrix, each

• Parallel memory units to
access entire row of matrix
in one cycle

• Address translation tables
for constant time
conditional row swap

• Separate input and output
ports

RREF – Row Arithmetic

24

• Hardware re-use for
Rescale Pivot Row and
Reduce Other Rows

• Parallel arithmetic units to
operate on entire row at a
time.

• Long feed forward critical
path – good for pipelining

• Registers to hold result
from Rescale Pivot Row to
be used during Reduce Other
Rows

RREF – Row Arithmetic – Rescale Pivot Row

25

n=7

k=3

q=7

RREF – Row Arithmetic – Reduce Other Rows

26

n=7

k=3

q=7

RREF – Row Arithmetic Pipeline

27

NIST
Security

Level
n k

Frequency
(MHz)

1 252 126 200

3 400 200 167

5 548 274 142

• Enables higher clock
frequency

• Generates new result every
clock cycle

• Increases flip-flop utilization

RREF – Results

28

• Area ~ n

• n↗ Frequency↘

• Latency (Cycles) ~ k2

NIST
Security

Level
n k

Frequency
(MHz)

1 252 126 200

3 400 200 167

5 548 274 142

Improvement Over AVX2 [Level 5]

29

TW (Hardware):
Evaluated on Artix-7

AVX2 (Software):
Evaluated on Ryzen 5 5600G
running @3.9 GHz
𝟐𝟕. 𝟑 × higher frequency
than HW

HW is faster by a factor of
• 1.4x for Keygen
• 2.5x for Sign and Verify

Transmission Cost [Level 5]

30

Lattices have the
smallest sizes

LESS has smaller
signatures than
SPHINCS+, but much
larger public keys

Latency [Level 5]

31

Compared to

SPHINCS+

Order of magnitude

slower signing

Several orders of

magnitude slower for

verification

Area [Level 5]

32

Compared to

SPHINCS+

2 × more LUTs

Similar number of

DSP/FF

6 × more BRAM

Conclusion

• This work represents the first hardware work on the new
candidate LESS

• Our implementation running on an Artix-7 FPGA
outperforms optimized AVX2 by ~2 ×

• LESS provides smaller signature sizes than SPHINCS+, but
at the cost of larger public keys and slower
signing/verification

33

34

Questions?

https://cryptography.gmu.edu/athena
Page: PQC

https://cryptography.gmu.edu/athena

35

RREF – Top-Level Unit

36

• Operates on entire row of the
input matrix at a time

• Constant time Pivot Search
implementation

• Parallel Pivot Search with
initialization and Reduce Other
Rows

• Pipelined arithmetic for
increased clock frequency and
high throughput

RREF – Pivot Search

37

• Constant-time search
hardware

• Search area decreases as
algorithm progresses

• Parallel units to identify the
non-zero element in every
column of a row

• Large priority encoder to
identify "left-most" non-zero
element in search area as pivot
element

Linear Equivalence Problem

Linear Equivalence Problem (LEP):

Given two matrices 𝐺, 𝐺′ ∈ 𝐹𝑞
𝑘×𝑛 which generate codes 𝐶, 𝐶′, determine if the

two corresponding codes are linearly equivalent. That is, does there exist
matrices 𝑄 ∈ 𝑀𝑛 and 𝑆 ∈ 𝐺𝐿(𝑘) such that 𝐺′ = 𝑆𝐺𝑄 where 𝐺𝐿(𝑘) is the set of
invertible matrices.

38

𝐺
Generator

Matrix

𝐺’ = 𝑆𝐺𝑄
𝑄

Monomial Matrix
𝑆

Invertible Matrix

Introduction: LESS Optimizations

Commitment Seed Tree:

• Commitment matrices are sampled using a leaf of a
tree as the seed

• Benefit: Rather than sending the seeds of all zero-
challenges (෨𝑄), we can send the path nodes needed
to generate them

Information Sets:

• For nonzero-challenges (𝑄−1 × ෨𝑄 ̃), send only the 𝑘
columns of the monomial which are needed to
calculate the pivot columns of the commitment

• Non-pivot columns are minimized and sorted to
account for lack of scaling/permuting

• Benefit: Cost of non-zero transmissions is cut in half

39

Example of path nodes saving

transmission cost in seed tree

Computational Bottlenecks:
Conversion to RREF:

• Requires 𝑘2 ∗ 𝑛 operations

• ~80% of the latency in software

Column Sorting:

• Non-pivot columns are sorted before
hashing commitment

• Column-wise sorting requires
transposition before and afterwards for
optimal performance

Generator Sampling:

• On-the-fly sampling used to reduce BRAM
requirement

• 𝐾2 coefficients (up to 75K) coefficients
needed

40

Conversion to RREF

Column sorted using element-wise

comparison

Results
Hardware Comparison Platform:

• Device: Artix-7 FPGAs

• Area: LUTs, FFs, DSP, BRAM

• Performance: Latency in 𝜇𝑠

41

Algorithm Designer Platform Parameter
Set

Selection

Keygen Sign Verify

LESS TW

Artix-7 FPGA

Synthesis Yes Yes Yes

SPHINCS+ Amiet Synthesis No Yes Yes

Dilithium Zhao Runtime Yes Yes Yes

FALCON Beckwith Synthesis No No Yes

TW → This Work

Software Comparison Platform:

• Device: Ryzen 5 5600G

• Implementation: AVX2

• Performance: Latency in 𝜇𝑠

Area [Level 1]

42

AVX2 Comparison [Level 1]

43

Latency [Level 1]

44

Transmission Cost [Level 1]

45

AVX2 Comparison [Level 3]

46

Area [Level 3]

47

Latency [Level 3]

48

Transmission Cost [Level 3]

49

	Slide 1: A High-Performance Hardware Implementation of the LESS Digital Signature Scheme
	Slide 2: Outline
	Slide 3: PQC Signatures
	Slide 4: LESS
	Slide 5: Background - RREF
	Slide 6: Background – Monomial Matrix
	Slide 7: Background – Generator Matrix and LEP
	Slide 8: LEP Sigma Identification Protocol
	Slide 9: LESS Key Generation (Simplified)
	Slide 10: LESS Sign Part 1 (Simplified)
	Slide 11: LESS Sign Part 2 (Simplified)
	Slide 12: LESS Verify (Simplified)
	Slide 13: LESS Parameters
	Slide 14: LESS Parameters
	Slide 15: LESS Parameters
	Slide 16: Top-Level Architecture
	Slide 17: RREF
	Slide 18: RREF – Example
	Slide 19: RREF – Example
	Slide 20: RREF – Example
	Slide 21: RREF – Algorithm
	Slide 22: RREF – Operational Flow
	Slide 23: RREF – Column Memory
	Slide 24: RREF – Row Arithmetic
	Slide 25: RREF – Row Arithmetic – Rescale Pivot Row
	Slide 26: RREF – Row Arithmetic – Reduce Other Rows
	Slide 27: RREF – Row Arithmetic Pipeline
	Slide 28: RREF – Results
	Slide 29: Improvement Over AVX2 [Level 5]
	Slide 30: Transmission Cost [Level 5]
	Slide 31: Latency [Level 5]
	Slide 32: Area [Level 5]
	Slide 33: Conclusion
	Slide 34
	Slide 35
	Slide 36: RREF – Top-Level Unit
	Slide 37: RREF – Pivot Search
	Slide 38: Linear Equivalence Problem
	Slide 39: Introduction: LESS Optimizations
	Slide 40: Computational Bottlenecks:
	Slide 41: Results
	Slide 42: Area [Level 1]
	Slide 43: AVX2 Comparison [Level 1]
	Slide 44: Latency [Level 1]
	Slide 45: Transmission Cost [Level 1]
	Slide 46: AVX2 Comparison [Level 3]
	Slide 47: Area [Level 3]
	Slide 48: Latency [Level 3]
	Slide 49: Transmission Cost [Level 3]

