

Breaking and Protecting the CRYSTAL

A Side-channel Analysis of Dilithium in Hardware

Hauke Steffen¹

Georg Land² Lucie Kogelheide³ Tim Güneysu^{2,4}

¹TÜV Informationstechnik GmbH, Essen, Germany

²Chair for Security Engineering, Ruhr-Universität Bochum, Germany

³BWI GmbH, Bonn, Germany ⁴DFKI GmbH, Cyber-Physical Systems, Bremen, Germany

August 18, 2023

Motivation: NIST Signatures

Dilithium Falcon SPHINCS⁺

Hauke Steffen, Georg Land, Lucie Kogelheide, Tim Güneysu | Breaking and Protecting the CRYSTAL | August 18, 2023

1

Motivation: NIST Signatures

Motivation: NIST Signatures

1

Motivation: Dilithium Side-Channel Research

Number of papers on software side-channel security of Dilithium: 5+.

Number of papers on hardware aspects: **NONE**.

Our Work

- 1. First side-channel analysis of a Dilithium hardware implementation, with special emphasis on practicality.
- 2. Two attack strategies: SPA and CPA.

3. Efficient countermeasures.

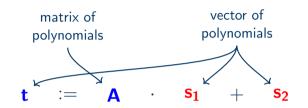
Measurement Setup

Target:

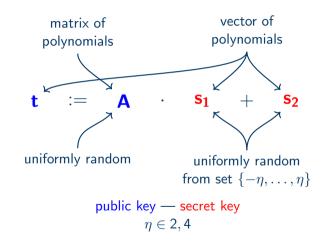
- discovery board with Artix-7 FPGA, 100 MHz
- unaltered, no integration of measurement resistor, no opening of FPGA package

Setup:

- near-field probe next to capacitor in the power path
- EM emanation is proportional to power consumption of the whole FPGA


Dilithium Keys

$\mathbf{t} := \mathbf{A} \cdot \mathbf{s}_1 + \mathbf{s}_2$


public key — secret key

Dilithium Keys

public key — secret key

Dilithium Keys

Secret Key Range

$\eta = 2$		
x	$x = \eta - \overline{x} \mod q$	HW(x)
0	0x000002	1
1	0x000001	1
2	0x000000	0
3	0x7fe000	10
4	0x7fdfff	22

$\eta = 4$		
\overline{X}	$x = \eta - \overline{x} mod x$ mod q	HW(x)
0	0x000004	1
1	0x00003	2
2	0x00002	1
3	0x000001	1
4	0x000000	0
5	0x7fe000	10
6	Ox7fdfff	22
7	0x7fdffe	21
8	0x7fdffd	21

Secret Key Range

HW(x)

2

1 0

10 22

21

21

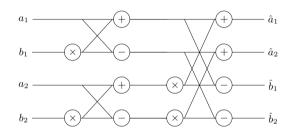
 $= \eta - \overline{x} \mod q$

0x000004

0x000003 0x000002 0x000001

0x000000 0x7fe000

0x7fdfff 0x7fdffe


0x7fdffd

$\eta = 2$			$\eta = 4$	
\overline{X}	$x = \eta - \overline{x} mod {q}$	HW(x)	\overline{X}	x
0	0x000002	1	0	
1	0x000001	1	1	
2	0x000000	0	2	
3	0x7fe000	10	3	
4	Ox7fdfff	22	4	
			5	
			6	
			7	

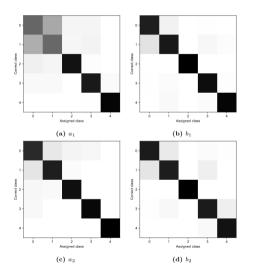
Diverse Hamming weight! Can we classify each case when processed?

8

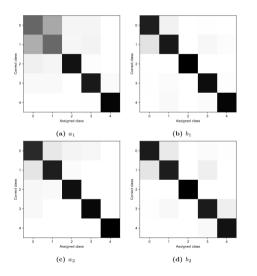
NTT Butterfly Unit

2x2 butterfly:

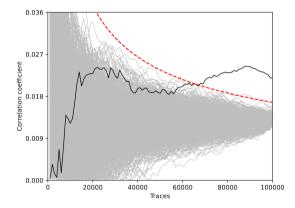
- ► four coefficients processed in parallel
- multiplication with constants (for b₁, a₂, b₂) yields more diverse power signature (better classification!)


Profiled SPA on First NTT Stage

First stage: Attacker has access to a profiling device with full control, also over secret key.


Second stage: Attacker obtains access to target device, aims at obtaining secret key.

Profiled SPA on First NTT Stage


- ► 50 000 profiling traces
- 5 000 attack traces
- displayed: probability that a single trace is assigned a class given its known class

Profiled SPA on First NTT Stage

- ► 50 000 profiling traces
- ▶ 5000 attack traces
- displayed: probability that a single trace is assigned a class given its known class
- multi-trace attacks: a1 takes 34 attack traces, all others at most 4

Correlation Power Analysis on Challenge Multiplication

- stronger attack than SPA, weaker attacker model!
- target: multiplication of c (part of signature candidate) and secret key
- ► power oracle: single-bit
- Hamming weight/distance yielded worse results!
- more in the paper: method to halve the number of hypotheses

Countermeasures

SPA can often be countered effectively by shuffling.

Protection against CPA usually requires masking.

Countermeasures

SPA can often be countered effectively by shuffling.

Protection against CPA usually requires masking.

Problem: storing the key.

Arithmetic vs Boolean Masking

Boolean Masking

Pro: compared to unmasked, keys are bigger by factor *d* (masking order)

Contra: polynomial multiplications and NTT are complicated*

Arithmetic Masking

Pro: polynomial multiplications are easy, can be done share-wise with public values

Contra: compared to unmasked, keys are bigger by factor 7*d*

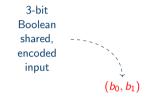
Arithmetic vs Boolean Masking

Boolean Masking

Pro: compared to unmasked, keys are bigger by factor *d* (masking order)

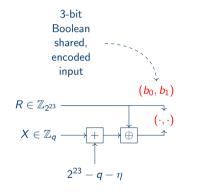
Contra: polynomial multiplications and NTT are complicated*

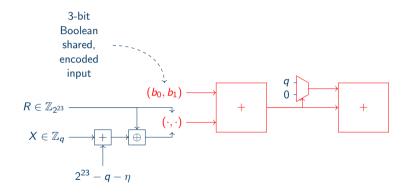
Arithmetic Masking


Pro: polynomial multiplications are easy, can be done share-wise with public values

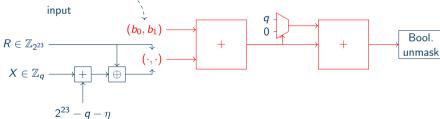
Contra: compared to unmasked, keys are bigger by factor 7*d*

*Multiplication with *c* can be done in Boolean domain completely with Schoolbook multiplication, but is slower and requires additional randomness.


Masking Conversion with Integrated Decoding

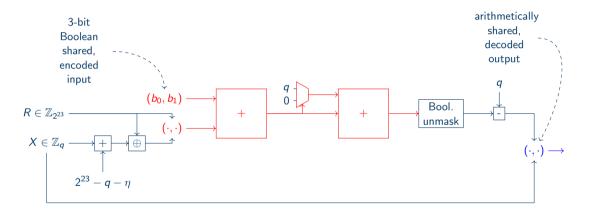


Masking Conversion with Integrated Decoding



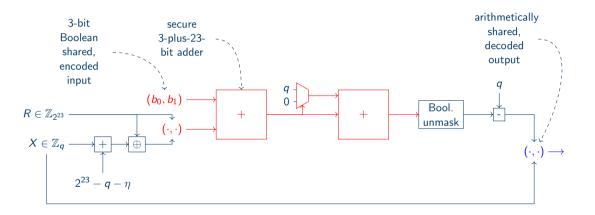
Masking Conversion with Integrated Decoding

shared, -----encoded

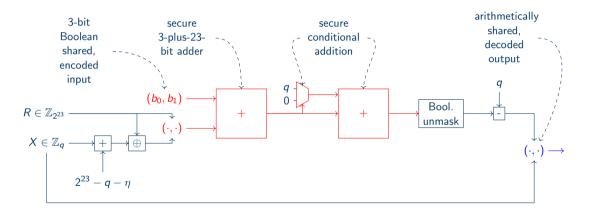

Masking Conversion with Integrated Decoding

RUHR-UNIVERSITÄT BOCHUM

3-bit Boolean


a

Masking Conversion with Integrated Decoding


Masking Conversion with Integrated Decoding

Masking Conversion with Integrated Decoding

Conclusion

What did we do?

- first side-channel analysis of Dilithium on hardware
- concrete SPA and CPA attack strategies
- efficient countermeasures

Why is it important?

- Dilithium will be standardized soon.
- There are no other works dedicated to security of hardware implementations of Dilithium!

What is left open?

- fully protected hardware implementation
- potential benefits of using Boolean masking only
- fault attacks and countermeasures in hardware

Link to the paper: eprint.iacr.org/2022/1410

Contact: mail@georg.land

