Isogeny-based cryptography After the Snap

Benjamin Wesolowski, CNRS and ENS de Lyon 16 August 2023, PQCrypto 2023, College Park, MD, USA

Isogeny crypto Elliptic curves, isogenies, computational problems

Elliptic curve over \mathbb{F}_q : solutions (*x*,*y*) in \mathbb{F}_q of

 $E(\mathbb{F}_q)$ is an additive group

- $y^2 = x^3 + ax + b$

Elliptic curve over \mathbb{F}_q : solutions (*x*,*y*) in \mathbb{F}_q of

 $E(\mathbb{F}_q)$ is an additive group

Isogeny: a map

a finite kernel

- $y^2 = x^3 + ax + b$

- $\varphi: E_1 \rightarrow E_2$
- which preserves certain structures. In particular, it is a group homomorphism with

Elliptic curve over \mathbb{F}_q : solutions (*x*,*y*) in \mathbb{F}_q of

 $E(\mathbb{F}_q)$ is an additive group

Isogeny: a map

a finite kernel

The **degree**^{*} is deg(φ) = #ker(φ)

- $y^2 = x^3 + ax + b$

- $\varphi: E_1 \rightarrow E_2$
- which preserves certain structures. In particular, it is a group homomorphism with

* for separable isogenies

Elliptic curve over \mathbb{F}_q : solutions (*x*,*y*) in \mathbb{F}_q of

 $E(\mathbb{F}_q)$ is an additive group

Isogeny: a map

a finite kernel

The **degree**^{*} is deg(φ) = #ker(φ)

• $\deg(\varphi \circ \psi) = \deg(\varphi) \cdot \deg(\psi)$

- $y^2 = x^3 + ax + b$

- $\varphi: E_1 \rightarrow E_2$
- which preserves certain structures. In particular, it is a group homomorphism with

* for separable isogenies

- Cryptosystems "based on" the isogeny problem?

- **Isogeny problem:** Given two elliptic curves E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$ Cryptosystems "based on" the isogeny problem?

The isogeny problem

Expectations: cryptosystems as secure as isogeny problem is hard

Security of cryptosystems

- **Isogeny problem:** Given two elliptic curves E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$ Cryptosystems "based on" the isogeny problem?

Expectations: cryptosystems as secure as isogeny problem is hard

Security of cryptosystems

- **Isogeny problem:** Given two elliptic curves E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$ Cryptosystems "based on" the isogeny problem?

Expectations: cryptosystems as secure as isogeny problem is hard

Security of cryptosystems

cryptograph)

• The solution φ is an isogeny...

- The solution φ is an isogeny...
- How to represent an isogeny?

- The solution φ is an isogeny...
- How to represent an isogeny?
- Hint: ker(φ) determines φ ...

Efficient isogenies

• Given ker(φ) (list of points), can evaluate φ in poly time — Vélu's formulae \checkmark Isogenies of small degree $\ell = 2$, or $3... "\ell$ -isogenies"

Efficient isogenies

Given ker(φ) (list of points), can evaluate φ in poly time — Vélu's formulae
✓ Isogenies of small degree ℓ = 2, or 3... "ℓ-isogenies"
Given random E₁ and E₂, smallest φ : E₁ → E₂ has degree poly(p)
X Typically, p > 2²⁵⁶

Efficient isogenies

- Given ker(φ) (list of points), can evaluate φ in poly time Vélu's formulae Isogenies of small degree $\ell = 2$, or $3... "\ell$ -isogenies"
- Given random E_1 and E_2 , smallest $\varphi : E_1 \rightarrow E_2$ has degree poly(p)

 Compose small isogenies to build bigger ones! Isogenies with **smooth degree** (small prime factors):

 $\varphi_n \circ \ldots \circ \varphi_2 \circ \varphi_1$ represented by ('compose', $\varphi_1, \varphi_2, \ldots, \varphi_n$), with deg(φ_i) small

• Fix small ℓ (say, ℓ = 2). Can easily compute ℓ -isogenies

• Fix small ℓ (say, ℓ = 2). Can easily compute ℓ -isogenies

an isogeny of degree ℓ = an edge in a graph

• Fix small ℓ (say, ℓ = 2). Can easily compute ℓ -isogenies

an isogeny of degree ℓ = an edge in a graph

• Fix small ℓ (say, ℓ = 2). Can easily compute ℓ -isogenies

E1 -

an isogeny of degree ℓ = an edge in a graph $\exists \ \ell$ -isogeny $E_1 \rightarrow E_2 \Rightarrow \exists \ \ell$ -isogeny $E_2 \rightarrow E_1$

EI

- Fix small ℓ (say, ℓ = 2). Can easily compute ℓ -isogenies
- The *l*-isogeny graph (supersingular...)

npute *l*-isogenies

- Fix small ℓ (say, ℓ = 2). Can easily compute ℓ -isogenies
- The *l*-isogeny graph (supersingular...)

- Fix small ℓ (say, ℓ = 2). Can easily compute ℓ -isogenies
- The *l*-isogeny graph (supersingular...)

• $(\ell + 1)$ -regular, **connected** (for supersingular curves)

The *l*-isogeny path problem

l-isogeny path problem: Given E_1 and E_2 , find an *l*-isogeny path from E_1 to E_2

The *l*-isogeny path problem

l-isogeny path problem: Given E_1 and E_2 , find an *l*-isogeny path from E_1 to E_2

- Path finding in a graph
- Hard! Best known algorithms = generic graph algorithms
- Typical meaning of "the isogeny problem"

Expectations: cryptosystems as secure as isogeny problem is hard

The isogeny problem

Hard even for Quantum algorithms Security of cryptosystems

Reality: a mess

Weird schemedependent variants of isogeny problems

 \leq

Security of cryptosystems

 \leq

The isogeny problem

Reality: a mess

Weird schemedependent variants of isogeny problems

Se
 cryp

The isogeny problem = CGL hash function (preimage)

Reality: a mess

Weird schemedependent variants of isogeny problems

Se
Cryp

The isogeny problem = CGL has One endomorphism = SQISigr

CGL hash function (preimage) SQISign (soundness)

Reality: a mess

Weird scheme-dependent variants of isogeny problems

- The isogeny problem
- One endomorphism Vectorisation

CGL hash function (preimage) SQISign (soundness) CSIDH (key recovery)

Reality: a mess

Weird scheme-dependent variants of isogeny problems

- The isogeny problem CGL hash function (preimage) = One endomorphism SQISign (soundness) CSIDH (key recovery) Vectorisation
- - - SSI-T

- - SIDH (key recovery)

- SQISign (soundness)

SSI-T

The isogeny problem One endomorphism Vectorisation

SIDH (key recovery)

- CGL hash function (preimage)

SSI-T

CSID

The isogeny problem One endomorphism Vectorisation

[Jao, De Feo] PQCrypto 2011 Isogeny-based key exchange NIST PQC alt-finalist SQISign (soundness)

SIDH (key recovery)

Reality: a mess

Weird schemedependent variants of isogeThe isogeny problem with "torsion point information"...

- The isogeny problem=CGL hash fitOne endomorphism=SQISign (soVectorisation=CSIDH (key
 - SSI-T = SIDH(k

curity of tosystems

The isogeny proble

"... [Jao, De Feo] PQCrypto 2011 Isogeny-based key exchange NIST PQC alt-finalist CSIDE (key recovery)

SIDH (key recovery)

SIDH Jao-De Feo 2011

Quotients

- Let *E* be an elliptic curve
- Let G a finite subgroup of E

- Let *E* be an elliptic curve
- Let G a finite subgroup of E
- Quotienting by G: there is a unique (separable) isogeny

with ker(φ) = G

Quotients

 $\varphi: E \to E/G$

- Let *E* be an elliptic curve
- Let G a finite subgroup of E
- Quotienting by G: there is a unique (separable) isogeny

with ker(φ) = G

• $deg(\varphi) = #G$

Quotients

 $\varphi: E \to E/G$

Quotients

- Let *E* be an elliptic curve
- Let G a finite subgroup of E
- **Quotienting by G:** there is a unique (separable) isogeny

with ker(φ) = G

- $deg(\varphi) = #G$
- Given generators of G, if #G has only small prime factors, then φ can be computed efficiently

 $\varphi: E \to E/G$

Random subgroup G of E₀

Random subgroup G of E₀ Compute $\varphi_A : E_0 \to E_0/G$

Random subgroup G of E₀ Compute $\varphi_A : E_0 \to E_0/G$ Let $E_A = E_0/G$

SIDH

Fix reference elliptic curve *E*₀

 E_{o} φ_A $E_A = E_0/G$

SIDH

Fix reference elliptic curve *E*₀

Random subgroup G of E₀ Compute $\varphi_A : E_0 \to E_0/G$ Let $E_A = E_0/G$

 E_{0} φ_A $E_A = E_0/G$

SIDH

Random subgroup *H* of *E*⁰

Random subgroup G of E₀ Compute $\varphi_A : E_0 \to E_0/G$ Let $E_A = E_0/G$

 E_{0} φ_A $E_A = E_0/G$

SIDH

Random subgroup *H* of *E*⁰ Compute $\varphi_B : E_0 \to E_0/H$

 E_A

Random subgroup G of E₀ Compute $\varphi_A : E_0 \to E_0/G$ Let $E_A = E_0/G$

 E_{0} φ_A $E_A = E_0/G$

SIDH

Random subgroup *H* of *E*⁰ Compute $\varphi_B : E_0 \rightarrow E_0/H$ Let $E_B = E_0/H$

 E_{0} φ_A $E_A = E_0/G$

SIDH

Fix reference elliptic curve *E*₀

Random subgroup *H* of *E*⁰ Compute $\varphi_B : E_0 \rightarrow E_0/H$ Let $E_B = E_0/H$

Eo φ_A $E_A = E_0/G$

SIDH

Fix reference elliptic curve *E*₀

Random subgroup *H* of E_0 Compute $\varphi_B : E_0 \rightarrow E_0/H$ Let $E_B = E_0/H$

 φ_B $\rightarrow E_{\rm O}/H = E_B$

 E_{o} φ_A $E_A = E_O/G$

SIDH

Fix reference elliptic curve *E*₀

Random subgroup *H* of *E*⁰ Compute $\varphi_B : E_0 \rightarrow E_0/H$ Let $E_B = E_0/H$

 φ_B $\rightarrow E_{\rm O}/H = E_{\rm B}$ $E_{\rm O}/(G+H) = E_{AB}$

Random subgroup G of E₀ Compute $\varphi_A : E_0 \to E_0/G$ Let $E_A = E_0/G$ Compute $E_{AB} = E_B/G$

 E_{o} φ_A $E_A = E_O/G$

SIDH

Fix reference elliptic curve *E*₀

Random subgroup *H* of *E*⁰ Compute $\varphi_B : E_0 \rightarrow E_0/H$ Let $E_B = E_0/H$

 φ_B $\rightarrow E_{\rm O}/H = E_B$ $E_{O}/(G+H) = E_{AB}$

 E_{o}

 φ_A

Random subgroup G of E₀ Compute $\varphi_A : E_0 \to E_0/G$ Let $E_A = E_0/G$ Compute $E_{AB} = E_B/G$

SIDH

Fix reference elliptic curve *E*₀

Random subgroup *H* of *E*⁰ Compute $\varphi_B : E_0 \rightarrow E_0/H$ Let $E_B = E_0/H$ Compute $E_{BA} = E_A/H$

 φ_B $\rightarrow E_{O}/H = E_{B}$ $E_A = E_O/G \longrightarrow E_O/(G + H) = E_{AB} = E_{BA}$

Random subgroup G of E₀ Compute $\varphi_A : E_0 \to E_0/G$ Let $E_A = E_0/G$ Compute $E_{AB} = E_B/G$ G is not a subgroup of E_B $\varphi_B(G)$ is!

SIDH

Fix reference elliptic curve *E*₀

Random subgroup H of E_0 Compute $\varphi_B : E_0 \rightarrow E_0/H$ Let $E_B = E_0/H$ Compute $E_{BA} = E_A/H$

Alice does not know φ_B ...

• The *N*-torsion of *E* is the subgroup

Torsion

 $E[N] = \{P \in E \mid N \cdot P = P + P + \dots + P = 0\}$

• The *N*-torsion of *E* is the subgroup

• $E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

Torsion

 $E[N] = \{P \in E \mid N \cdot P = P + P + \dots + P = 0\}$

- The *N*-torsion of *E* is the subgroup
- $E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

- Alice picks a subgroup G of $E_0[2^n]$
- Bob gives φ_B on $E_0[2^n]$
- Alice can compute $\varphi_B(G)$

Torsion

 $E[N] = \{P \in E \mid N \cdot P = P + P + \dots + P = 0\}$

- The N-torsion of E is the subgroup
- $E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

- Bob gives φ_B on $E_0[2^n]$
- Alice can compute $\varphi_B(G)$

Torsion

$E[N] = \{P \in E \mid N \cdot P = P + P + ... + P = 0\}$

• Alice picks a subgroup G of $E_0[2^n]$ \triangleleft Many choices, good entropy

- The N-torsion of E is the subgroup
- $E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

- Bob gives φ_B on $E_0[2^n]$
- Alice can compute $\varphi_B(G)$

Torsion

$E[N] = \{P \in E \mid N \cdot P = P + P + \dots + P = 0\}$

• Alice picks a subgroup G of $E_0[2^n]$ \blacktriangleleft Many choices, good entropy φ_B remains secret everywhere else...

- The N-torsion of E is the subgroup
- $E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

- Alice picks a subgroup G of $E_0[2^n]$ \checkmark Many choices, good entropy
- Bob gives φ_B on $E_0[2^n]$ \blacktriangleleft φ_B remains secret everywhere else...
- Alice can compute $\varphi_B(G)$

Torsion

$E[N] = \{P \in E \mid N \cdot P = P + P + \dots + P = 0\}$

Can compute shared secret $E_{AB} = E_B / \varphi_B(G)$

- Fix: an elliptic curve E_0
- Generators P_2 , Q_2 of $E_0[2^n] \cong (\mathbb{Z}/2^n\mathbb{Z})^2$
- Generators P_3 , Q_3 of $E_0[3^m] \cong (\mathbb{Z}/3^m\mathbb{Z})^2$

Random subgroup G of $E_0[2^n]$ Compute $\varphi_A : E_0 \to E_0/G$ Let $E_A = E_0/G$

Compute $E_{AB} = E_B / \varphi_B(G)$

SIDH

Random subgroup H of $E_0[3^m]$ Compute $\varphi_B : E_0 \rightarrow E_0/H$

Let $E_B = E_0/H$

Compute **E**_{BA} = $E_A/\varphi_A(H)$

The SSI-T problem

Context:

- two elliptic curves E_0 and E_1
- an isogeny $\varphi: E_0 \to E_1$ (say, of degree 3^m like Bob's isogeny)
- an integer N coprime to deg(φ) (say, N = 2ⁿ...)
- generators P and Q of $E_0[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

SSI-T: Given $E_0, E_1, P, Q, \varphi(P)$ and $\varphi(Q)$, find the isogeny $\varphi: E_0 \to E_1$

The SSI-T problem

Context:

- two elliptic curves E_0 and E_1
- an isogeny $\varphi: E_0 \to E_1$ (say, of degree 3^m like Bob's isogeny)
- an integer N coprime to deg(φ) (say, N = 2ⁿ...)
- generators P and Q of $E_0[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

"torsion point information" **SSI-T:** Given E_0 , E_1 , P, Q, $\varphi(P)$ and $\varphi(Q)$, find the isogeny $\varphi: E_0 \to E_1$

The SSI-T problem

Context:

- two elliptic curves E_0 and E_1
- an isogeny $\varphi: E_0 \to E_1$ (say, of degree 3^m like Bob's isogeny)
- an integer N coprime to deg(φ) (say, N = 2ⁿ...)
- generators P and Q of $E_0[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$

"torsion point information" **SSI-T:** Given $E_0, E_1, P, Q, \varphi(P)$ and $\varphi(Q)$, find the isogeny $\varphi: E_0 \to E_1$

Torsion point information: a weakness?

Birth of SIDH

Torsion point information: a weakness? ob Birth of SIDH

[Galbraith, Petit, Silva] an active attack

Torsion point information: a weakness? 2010 Birth of [*Petit*] breaking **SIDH** "overstreched" SSI-T [Galbraith, Petit, Silva]

an active attack

Torsion point information: a weakness? ob ~or Birth of [*Petit*] breaking **SIDH** "overstreched" SSI-T [de Quehen, Kutas, Leonardi, [Galbraith, Petit, Silva]

an active attack

Martindale, Panny, Petit, Stange] Improving Petit's method

Torsion point information: a weakness? -or Birth of [*Petit*] breaking **SIDH** "overstreched" SSI-T [de Quehen, Kutas, Leonardi, [Galbraith, Petit, Silva] Martindale, Panny, Petit, Stange] an active attack

Standard SIDH parameters totally unaffected

Improving Petit's method
The Snap July 30 2022

July 29 2022 Enjoying the French Alps

An efficient key recovery attack on SIDH

An efficient key recovery attack on SIDH

Wouter Castryck, Thomas Decru

An efficient key recovery attack on SIDH Wouter Castryck, Thomas Decru

"Breaks SIKEp434 challenge in ten minutes"

Efficient Key Recovery Attack on SIDH (Best Paper Award) [Castryck, Decru]

A Direct Key Recovery Attack on SIDH (Honourable Mention)

[Maino, Martindale, Panny, Pope, W.]

Breaking SIDH in Polynomial Time (Honourable Mention) [Robert]

Eurocrypt 2023 – "Isogeny 1" session

Interpolating isogenies [CD, MMPPW, R]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let $n > (\log_2(d) + 1)/2$, and (P, Q) is a basis of $E_1[2^n]$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time

Interpolating isogenies [CD, MMPPW, R]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let $n > (\log_2(d) + 1)/2$, and (P, Q) is a basis of $E_1[2^n]$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Interpolating isogenies [CD, MMPPW, R]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let $n > (\log_2(d) + 1)/2$, and (P, Q) is a basis of $E_1[2^n]$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: The few points leaked by SIDH leak the full secret.

Isogeny-based cryptography

Weird scheme-dependent variants of isogeny problems

- The isogeny problem CGL hash function (preimage) = One endomorphism SQISign (soundness) CSIDH (key recovery) Vectorisation
- - - SSI-T
- - SIDH (key recovery)

Body count

Isogeny-based cryptography

Weird scheme-dependent variants of isogeny problems

- The isogeny problem
- One endomorphism
 - Vectorisation

Body count

CGL hash function (preimage) SQISign (soundness) CSIDH (key recovery)

SIDH (key recovery)

Isogeny-based cryptography

Weird scheme- \leq dependent variants of isogeny problems

- The isogeny problem
- One endomorphism
 - Vectorisation
- - - SIDH (key recovery)

Body count

CGL hash function (preimage) SQISign (soundness) CSIDH (key recovery)

• The isogeny path problem is unaffected

- The isogeny path problem is unaffected
- SQIsign [De Feo, Kohel, Leroux, Petit, W.] unaffected
 - Signature scheme, most compact pk + sig of all PQ schemes
 - Submitted to the NIST PQ signature call 2023

- The isogeny path problem is unaffected
- SQlsign [De Feo, Kohel, Leroux, Petit, W.] unaffected
 - Signature scheme, most compact pk + sig of all PQ schemes
 - Submitted to the NIST PQ signature call 2023
- CSIDH [Castryck, Lange, Martindale, Panny, Renes] unaffected
 - Key exchange very similar to Diffie-Hellman

- The isogeny path problem is unaffected
- SQIsign [De Feo, Kohel, Leroux, Petit, W.] unaffected
 - Signature scheme, most compact pk + sig of all PQ schemes
 - Submitted to the NIST PQ signature call 2023
- CSIDH [Castryck, Lange, Martindale, Panny, Renes] unaffected
 - Key exchange very similar to Diffie-Hellman
- Wide variety of CSIDH-inspired constructions
 - "group action" cryptography
 - Signatures, PRFs, threshold stuff, oblivious stuff...

- Let $\varphi: E_1 \rightarrow E_2$ of degree d
- Let $n > (\log_2(d) + 1)/2$, and (P, Q) is a basis of $E_1[2^n]$
- Given (d, P, Q, $\varphi(P)$, $\varphi(Q)$), one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time

- Let $\varphi: E_1 \to E_2$ of degree d
- Let $n > (\log_2(d) + 1)/2$, and (P, Q) is a basis of $E_1[2^n]$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time

Use random secret degree: **MD-SIDH** (Masked Degree)

- Let $\varphi: E_1 \to E_2$ of degree d
- Let $n > (\log_2(d) + 1)/2$, and (P, Q) is a basis of $E_1[2^n]$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time

Use random secret degree: **MD-SIDH** (Masked Degree)

Instead of $\varphi(P)$, $\varphi(Q)$, send $a \cdot \varphi(P)$, $a \cdot \varphi(Q)$ for random integer a: M-SIDH

- Let $\varphi: E_1 \to E_2$ of degree d
- Let $n > (\log_2(d) + 1)/2$, and (P, Q) is a basis of $E_1[2^n]$
- Given (d, P, Q, $\varphi(P)$, $\varphi(Q)$), one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time

Use random secret degree: **MD-SIDH** (Masked Degree)

• Fouotsa, Moriya, Petit. Eurocrypt 2023

- Instead of $\varphi(P)$, $\varphi(Q)$, send $a \cdot \varphi(P)$, $a \cdot \varphi(Q)$ for random integer a: M-SIDH

Interpolating isogenies [CD23, MMPP]

- Let $\varphi: E_1 \to E_2$ of degree d
- Let n > (log₂(d) + 1)/2, and (P, Q) is a basis of E₁[2ⁿ]
- Given (d, P, Q, $\varphi(P)$, $\varphi(Q)$), one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time

Use random secret degree: MD-SIDH (Masked Degree)

- Fouotsa, Moriya, Petit. Eurocrypt 2023
- Huge cost: 4434 bytes public keys (vs. 197 bytes in SIKE)

N23, Rob23]:

Instead of $\varphi(P)$, $\varphi(Q)$, send $a \cdot \varphi(P)$, $a \cdot \varphi(Q)$ for random integer a: M-SIDH

Representing isogenies Back to the foundations

The isogeny problem

"Idealised" isogeny problem: Given E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$

l-isogeny path problem: Given E_1 and E_2 , find an *l*-isogeny path from E_1 to E_2

The isogeny problem

"Idealised" isogeny problem: Given E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$

• The *l*-isogeny path problem is the standard version of "the isogeny problem" because... no other way to represent solution $\varphi: E_1 \rightarrow E_2$ than as a path?

Strong restriction on φ because of technical obstacle

- *l*-isogeny path problem: Given E_1 and E_2 , find an *l*-isogeny path from E_1 to E_2

The isogeny problem

"Idealised" isogeny problem: Given E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$

l-isogeny path problem: Given E_1 and E_2 , find an *l*-isogeny path from E_1 to E_2

• The *l*-isogeny path problem is the standard version of "the isogeny problem" because... no other way to represent solution $\varphi: E_1 \rightarrow E_2$ than as a path?

Strong restriction on φ because of technical obstacle

• How to represent an isogeny?

Efficient representation of isogenies

How to represent an isogeny?

• an efficient representation of φ : can evaluate $\varphi(P)$ in poly. time for any P

Efficient representation of isogenies

How to represent an isogeny?

• an efficient representation of φ : can evaluate $\varphi(P)$ in poly. time for any P

Examples:

- Small degree isogenies
- Compositions of small degree isogenies
- Linear combinations of compositions of small degree isogenies...

Interpolating isogenies [CD23, MMPPW23, Rob23]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let $n > (\log_2(d) + 1)/2$, and (P, Q) is a basis of $E_1[2^n]$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Interpolating isogenies [CD23, MMPPW23, Rob23]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let $n > (\log_2(d) + 1)/2$, and (P, Q) is a basis of $E_1[2^n]$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: (d, P, Q, $\varphi(P)$, $\varphi(Q)$) is an efficient representation of φ .

Interpolating isogenies [CD23, MMPPW23, Rob23]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let $n > (\log_2(d) + 1)/2$, and (P, Q) is a basis of $E_1[2^n]$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: (d, P, Q, $\varphi(P)$, $\varphi(Q)$) is an efficient representation of φ .

• "Interpolation representation" of φ , or "HD representation"

Interpolating isogenies [CD23, MMPPW23, Rob23]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let $n > (\log_2(d) + 1)/2$, and (P, Q) is a basis of $E_1[2^n]$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: (d, P, Q, $\varphi(P)$, $\varphi(Q)$) is an efficient representation of φ .

- "Interpolation representation" of φ , or "HD representation"
- Universal! Given any efficient repr. of φ , can compute its interpolation repr.

The universal isogeny problem

The universal isogeny problem: Given E_1 and E_2 , find an isogeny $\varphi : E_1 \rightarrow E_2$ represented by interpolation.

The universal isogeny problem

The universal isogeny problem: Given E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$ represented by interpolation.

• No restriction on φ like in ℓ -isogeny path: any φ can be a valid response

The universal isogeny problem

The universal isogeny problem: Given E_1 and E_2 , find an isogeny $\varphi: E_1 \rightarrow E_2$ represented by interpolation.

• No restriction on φ like in ℓ -isogeny path: any φ can be a valid response

Universal isogeny \Leftrightarrow *l*-isogeny path [Page, W.] to appear
Interpolation representation: (*d*, *P*, *Q*, $\varphi(P)$, $\varphi(Q)$) is an efficient repr. of φ

Powerful new tool

Interpolation representation: (d, P, Q, $\varphi(P)$, $\varphi(Q)$) is an efficient repr. of φ

Powerful new tool

New constructions are emerging

Interpolation representation: (d, P, Q, $\varphi(P)$, $\varphi(Q)$) is an efficient repr. of φ

Powerful new tool

New constructions are emerging

Faster, simpler signing

Improved security proof

• SQIsign HD [Dartois, Leroux, Robert, W.]: signature scheme inspired by SQIsign

Interpolation representation: (d, P, Q, $\varphi(P)$, $\varphi(Q)$) is an efficient repr. of φ

Powerful new tool

New constructions are emerging

Faster, simpler signing

Improved security proof

SQIsign HD [Dartois, Leroux, Robert, W.]: signature scheme inspired by SQIsign

FESTA [Basso, Maino, Pope]: Fast Encryption from Supersingular Torsion Attacks

Interpolation representation: (d, P, Q, $\varphi(P)$, $\varphi(Q)$) is an efficient repr. of φ

Powerful new tool How efficient is it?

New constructions are emerging

Faster, simpler signing

Improved security proof

SQIsign HD [Dartois, Leroux, Robert, W.]: signature scheme inspired by SQIsign

FESTA [Basso, Maino, Pope]: Fast Encryption from Supersingular Torsion Attacks

The attack Isogenies in higher dimension

Let E an elliptic curve over \mathbb{F}_q and N an integer

• Multiplication by *N* is an isogeny

Dual

$[N]: E \longrightarrow E: P \longmapsto [N]P = P + P + \dots + P$

Let E an elliptic curve over \mathbb{F}_q and N an integer

- Multiplication by N is an isogeny $[N]: E \to E: P$
- Let $\varphi: E_1 \rightarrow E_2$ be an isogeny

Dual

$[N]: E \longrightarrow E: P \longmapsto [N]P = P + P + \dots + P$

Let E an elliptic curve over \mathbb{F}_q and N an integer

- Multiplication by N is an isogeny
- Let $\varphi: E_1 \rightarrow E_2$ be an isogeny
- **Dual of** φ : unique isogeny $\hat{\varphi} : E_2 \to E_1$ such that

Dual

$[N]: E \longrightarrow E : P \longmapsto [N]P = P + P + \dots + P$

 $\hat{\varphi} \circ \varphi = [\deg(\varphi)]$

Elliptic curve: a curve that is also a group

E

Elliptic curve: a curve that is also a group

Abelian surface: surface that is also a group • Example: product $E_1 \times E_2$

Elliptic curve: a curve that is also a group

Abelian surface: surface that is also a group

• Example: product $E_1 \times E_2$

Abelian variety: same but any dimension

• Example: product $E_1 \times E_2 \times ... \times E_n$

 $\Psi: E_1 \times E_2 \longrightarrow F_1 \times F_2$

 $(P_1, P_2) \longmapsto$

Isogenies between products

 $\Psi: E_1 \times E_2 \longrightarrow F_1 \times F_2$

 \longmapsto

(P₁, P₂)

 $(P_1, P_2) \longmapsto$

$(\varphi_{11}(P_1), ?)$

 \longmapsto

(*P*₁, *P*₂)

 $(\varphi_{11}(P_1) + \varphi_{21}(P_2), ?)$

 $(\varphi_{11}(P_1) + \varphi_{21}(P_2), \varphi_{12}(P_1) + \varphi_{22}(P_2))$

 $\begin{pmatrix} \varphi_{11}(P_1) + \varphi_{21}(P_2), \varphi_{12}(P_1) + \varphi_{22}(P_2) \end{pmatrix}$ $= \begin{pmatrix} \varphi_{11} & \varphi_{21} \\ \varphi_{12} & \varphi_{22} \end{pmatrix} \cdot \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$

Every isogeny $\Psi: E_1 \times E_2 \rightarrow F_1 \times F_2$ is of the form

 $\Psi: E_1 \times E_2 \longrightarrow$

 $(P_1, P_2) \longmapsto$

where $\varphi_{ij}: E_i \to F_j$

$$F_{1} \times F_{2}$$

$$\begin{pmatrix} \varphi_{11} & \varphi_{21} \\ \varphi_{12} & \varphi_{22} \end{pmatrix} \cdot \begin{pmatrix} P_{1} \\ P_{2} \end{pmatrix}$$

- Every isogeny $\Psi: E_1 \times E_2 \rightarrow F_1 \times F_2$ is of the form $\Psi: E_1 \times E_2$ — $(P_1, P_2) \longrightarrow$
- where $\varphi_{ii}: E_i \to F_j$
- It is an **N-isogeny** if

$$\begin{pmatrix} \varphi_{11} & \varphi_{21} \\ \varphi_{12} & \varphi_{22} \end{pmatrix} \cdot \begin{pmatrix} \hat{\varphi}_{11} & \hat{\varphi}_{12} \\ \hat{\varphi}_{21} & \hat{\varphi}_{22} \end{pmatrix} = \begin{pmatrix} [N] & O \\ O & [N] \end{pmatrix}$$

$$\rightarrow F_1 \times F_2 \begin{pmatrix} \varphi_{11} & \varphi_{21} \\ \varphi_{12} & \varphi_{22} \end{pmatrix} \cdot \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$$

- Every isogeny $\Psi: E_1 \times E_2 \rightarrow F_1 \times F_2$ is of the form $\Psi: E_1 \times E_2$ — $(P_1, P_2) \longrightarrow$
- where $\varphi_{ii}: E_i \to F_j$
- It is an **N-isogeny** if

$$\begin{pmatrix} \varphi_{11} & \varphi_{21} \\ \varphi_{12} & \varphi_{22} \end{pmatrix} \cdot \begin{pmatrix} \hat{\varphi}_{11} & \hat{\varphi}_{12} \\ \hat{\varphi}_{21} & \hat{\varphi}_{22} \end{pmatrix} = \begin{pmatrix} [N] & 0 \\ 0 & [N] \end{pmatrix}$$

• Given the kernel of a 2^n -isogeny, can evaluate it in polynomial time

$$\rightarrow F_1 \times F_2 \begin{pmatrix} \varphi_{11} & \varphi_{21} \\ \varphi_{12} & \varphi_{22} \end{pmatrix} \cdot \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$$

• Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)

- Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square

- Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

$$\left(\begin{array}{cc}
[a] & -\hat{\varphi} \\
\varphi & [a]
\end{array}\right)$$

- Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• If we can evaluate Ψ , we can evaluate φ :

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

- Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• If we can evaluate Ψ , we can evaluate φ :

$$E_1 \xrightarrow{\text{inclusion}} E_1 \times E_2$$

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

 $\psi \to E_1 \times E_2 \xrightarrow{\text{projection}} E_2$

- Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• If we can evaluate Ψ , we can evaluate φ :

$$E_1 \xrightarrow{\text{inclusion}} E_1 \times E_2$$

$$P_1$$

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

 $\psi \to E_1 \times E_2 \xrightarrow{\text{projection}} E_2$

- Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• If we can evaluate Ψ , we can evaluate φ :

$$E_1 \xrightarrow{\text{inclusion}} E_1 \times E_2$$

$$P_1 \qquad (P_1, 0)$$

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

 $\psi \to E_1 \times E_2 \xrightarrow{\text{projection}} E_2$

- Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• If we can evaluate Ψ , we can evaluate φ :

$$E_1 \xrightarrow{\text{inclusion}} E_1 \times E_2$$

$$P_1 \qquad (P_1, 0)$$

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

 $\xrightarrow{\Psi} E_1 \times E_2 \xrightarrow{\text{projection}} E_2$ $(aP_1, \varphi(P_1))$

- Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• If we can evaluate Ψ , we can evaluate φ :

$$E_1 \xrightarrow{\text{inclusion}} E_1 \times E_2$$

$$P_1 \qquad (P_1, 0)$$

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

 $\Psi \xrightarrow{} E_1 \times E_2 \xrightarrow{} \text{projection}$ E_2 $(aP_{1}, \varphi(P_{1}))$ $\varphi(P_1)$

- Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

$$\left(\begin{array}{cc}
[a] & -\hat{\varphi} \\
\varphi & [a]
\end{array}\right)$$

- Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• Is it a 2^{*n*}-isogeny?

$$\left(\begin{array}{cc}
[a] & -\hat{\varphi} \\
\varphi & [a]
\end{array}\right)$$

- Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• Is it a 2^{*n*}-isogeny?

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix} \cdot \begin{pmatrix} [a] & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix}$$

$$\left(\begin{array}{cc}
[a] & -\hat{\varphi} \\
\varphi & [a]
\end{array}\right)$$

- Let $\varphi: E_1 \to E_2$ of degree 3^m (Bob's secret) $\hat{\varphi} \circ \varphi = [3^m]$
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• Is it a 2^{*n*}-isogeny?

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix} \cdot \begin{pmatrix} [a] & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ -\varphi & [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \end{pmatrix}$$

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

 $\begin{bmatrix} a^2 \end{bmatrix} + \begin{bmatrix} 3^m \end{bmatrix} \qquad 0 \qquad \\ 0 \qquad \begin{bmatrix} a^2 \end{bmatrix} + \begin{bmatrix} 3^m \end{bmatrix} \end{pmatrix}$

- Let $\varphi: E_1 \to E_2$ of degree 3^m (Bob's secret) $\hat{\varphi} \circ \varphi = [3^m]$
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• Is it a 2^{*n*}-isogeny?

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix} \cdot \begin{pmatrix} [a] & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ -\varphi & [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \end{pmatrix}$$

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

 $\begin{bmatrix} a^2 \end{bmatrix} + \begin{bmatrix} 3^m \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} a^2 \end{bmatrix} + \begin{bmatrix} 3^m \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 2^n \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} 2^n \end{bmatrix} \end{pmatrix}$
- Let $\varphi: E_1 \to E_2$ of degree 3^m (Bob's secret) $\hat{\varphi} \circ \varphi = [3^m]$
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• Is it a 2^{*n*}-isogeny?

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix} \cdot \begin{pmatrix} [a] & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \end{pmatrix}$$

• $\ker(\Psi) = \{ ([3^m]P, [a]\varphi(P)) \mid P \in E_1[2^n] \}$

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

 $\begin{bmatrix} a^2 \end{bmatrix} + \begin{bmatrix} 3^m \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} a^2 \end{bmatrix} + \begin{bmatrix} 3^m \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 2^n \end{bmatrix} & 0 \\ 0 & \begin{bmatrix} 2^n \end{bmatrix} \end{pmatrix}$

- $\hat{\varphi} \circ \varphi = [3m]$ • Let $\varphi: E_1 \rightarrow E_2$ of degree 3^m (Bob's secret)
- Suppose $2^n 3^m = a^2$ is a square
- Define $\Psi: E_1 \times E_2 \rightarrow E_1 \times E_2$ as

Ψ=

• Is it a 2^{*n*}-isogeny?

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix} \cdot \begin{pmatrix} [a] & \hat{\varphi} \\ -\varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \end{pmatrix} = \begin{pmatrix} [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \\ \varphi & [a] & \hat{\varphi} & \hat{\varphi} & \hat{\varphi} \end{pmatrix}$$

- ker(Ψ) = { ([3^m]P, [a] φ (P)) | $P \in E_1[2^n]$ }

$$\begin{pmatrix} [a] & -\hat{\varphi} \\ \varphi & [a] \end{pmatrix}$$

 $\begin{bmatrix} a^2 \end{bmatrix} + \begin{bmatrix} 3^m \end{bmatrix} \quad 0 \\ 0 \quad [a^2] + \begin{bmatrix} 3^m \end{bmatrix} \quad = \begin{pmatrix} \begin{bmatrix} 2^n \end{bmatrix} & 0 \\ 0 \quad \begin{bmatrix} 2^n \end{bmatrix} \end{pmatrix}$

• Given φ on $E_1[2^n]$ (torsion information) \Rightarrow can compute ker(Ψ) \Rightarrow can compute φ

2ⁿ – 3^m not a square? [Robert] has a solution

- 2ⁿ 3^m not a square? [Robert] has a solution
- Suppose $2^n 3^m = a^2 + b^2$ is a sum of 2 squares...

- 2ⁿ 3^m not a square? [Robert] has a solution
- Suppose $2^n 3^m = a^2 + b^2$ is a sum of 2 squares...
- Define $\Psi: E_1 \times E_1 \times E_2 \times E_2 \rightarrow E_1 \times E_1 \times E_2 \times E_2$ as

 $\begin{pmatrix}
a & b & -\hat{\varphi} & 0 \\
-b & a & 0 & -\hat{\varphi} \\
\phi & 0 & a & b \\
0 & \varphi & -b & a
\end{pmatrix}$

- 2ⁿ 3^m not a square? [Robert] has a solution
- Suppose $2^n 3^m = a^2 + b^2$ is a sum of 2 squares...
- Define $\Psi: E_1 \times E_1 \times E_2 \times E_2 \rightarrow E_1 \times E_1 \times E_2 \times E_2$ as

• It is a 2ⁿ-isogeny

 $\begin{pmatrix}
a & b & -\hat{\varphi} & 0 \\
-b & a & 0 & -\hat{\varphi} \\
\varphi & 0 & a & b \\
0 & \varphi & -b & a
\end{pmatrix}$

- 2ⁿ 3^m not a square? [Robert] has a solution
- Suppose $2^n 3^m = a^2 + b^2$ is a sum of 2 squares...
- Define $\Psi: E_1 \times E_1 \times E_2 \times E_2 \rightarrow E_1 \times E_1 \times E_2 \times E_2$ as

- It is a 2^{*n*}-isogeny
- Isogeny in dimension 4
- $\begin{pmatrix}
 a & b & -\hat{\varphi} & 0 \\
 -b & a & 0 & -\hat{\varphi} \\
 \varphi & 0 & a & b \\
 0 & \varphi & -b & a
 \end{pmatrix}$

- 2ⁿ 3^m not a square? [Robert] has a solution
- Suppose $2^n 3^m = a^2 + b^2$ is a sum of 2 squares...
- Define $\Psi: E_1 \times E_1 \times E_2 \times E_2 \rightarrow E_1 \times E_1 \times E_2 \times E_2$ as

- It is a 2^{*n*}-isogeny
- Isogeny in dimension 4
- Many integers are sum of 2 squares... but not all

 $\begin{pmatrix}
a & b & -\hat{\varphi} & 0 \\
-b & a & 0 & -\hat{\varphi} \\
\varphi & 0 & a & b \\
0 & \varphi & -b & a
\end{pmatrix}$

• 2ⁿ – 3^m not a sum of two square? [Robert] has another solution: Zarhin's trick

- 2ⁿ 3^m not a sum of two square? [Robert] has another solution: Zarhin's trick
- Every integer is a sum of 4 squares: $2^n 3^m = a^2 + b^2 + c^2 + d^2$

- 2ⁿ 3^m not a sum of two square? [Robert] has another solution: Zarhin's trick
- Every integer is a sum of 4 squares: $2^n 3^m = a^2 + b^2 + c^2 + d^2$

• **FESTA:** Fast Encryption from Supersingular Torsion Attacks

• **FESTA:** Fast Encryption from Supersingular Torsion Attacks **2D isogenies** for decryption

• **FESTA:** Fast Encryption from Supersingular Torsion Attacks **2D isogenies** for decryption Well-studied, "Richelot isogenies", efficient

- **FESTA:** Fast Encryption from Supersingular Torsion Attacks
 - ➡ 2D isogenies for decryption
 - Well-studied, "Richelot isogenies", efficient
 - Good implementations available
- nies", **efficient** ble

- **FESTA:** Fast Encryption from Supersingular Torsion Attacks
 - ➡ 2D isogenies for decryption
 - Well-studied, "Richelot isogenies", efficient
 - Good implementations available
- **SQIsign HD**: signature scheme inspired by SQIsign

- **FESTA:** Fast Encryption from Supersingular Torsion Attacks
 - ➡ 2D isogenies for decryption
 - Well-studied, "Richelot isogenies", efficient
 - Good implementations available
- **SQIsign HD**: signature scheme inspired by SQIsign
 - → 4D isogenies for verification

- **FESTA:** Fast Encryption from Supersingular Torsion Attacks
 - ➡ 2D isogenies for decryption
 - Well-studied, "Richelot isogenies", efficient
 - Good implementations available
- **SQIsign HD**: signature scheme inspired by SQIsign
 - → **4D isogenies** for verification
 - ► Not well studied

- **FESTA:** Fast Encryption from Supersingular Torsion Attacks
 - ➡ 2D isogenies for decryption
 - Well-studied, "Richelot isogenies", efficient
 - Good implementations available
- **SQIsign HD**: signature scheme inspired by SQIsign
 - → 4D isogenies for verification
 - Not well studied
 - Previous literature says it can be done in polynomial time...

- FESTA: Fast Encryption from Supersingular Torsion Attacks
 - **2D isogenies** for decryption
 - > Well-studied, "Richelot isogenies", efficient
 - Good implementations available
- **SQIsign HD**: signature scheme inspired by SQIsign
 - **4D isogenies** for verification
 - Not well studied
 - Previous literature says it can be done in polynomial time... Back-of-the-envelope suggests it will be **practical**TM