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Isogeny crypto

Elliptic curves, isogenies,
computational problems




Elliptic curves

Elliptic curve over [F4: solutions (x,y) in Fq of

y2=x3+ax+b

E(Fg) is an additive group



Elliptic curves

Elliptic curve over [F4: solutions (x,y) in Fq of

y2=x3+ax+b
E(Fg) is an additive group
Isogeny: a map
@ : E1— E2

which preserves certain structures. In particular, it is a group homomorphism with
a finite kernel



Elliptic curves

Elliptic curve over [F4: solutions (x,y) in Fq of
y2=x3+ax+b
E(Fg) is an additive group

Isogeny: a map

@:E1— E>

which preserves certain structures. In particular, it is a group homomorphism with
a finite kernel

™

The degree” is deg(p) = #ker(p) * for separable isogenies

-—



Elliptic curves

Elliptic curve over [F4: solutions (x,y) in Fq of

y2=x3+ax+b
E(Fg) is an additive group
Isogeny: a map
@ : E1— E>

which preserves certain structures. In particular, it is a group homomorphism with
a finite kernel
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- |

ker(op) * for separable isogenies

* deg(p o 7’b) = deg(go) ' deg(¢)
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The isogeny problem

Isogeny problem: Given two elliptic curves E1 and E», find an isogeny ¢ : E1 — E»

* The solution ¢ is an isogeny...

* How to represent an isogeny?

* Hint: ker(p) determines o...
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Efficientisogenies

* Given ker(gp) (list of points), can evaluate ¢ in poly time — Vélu's formulae
Isogenies of small degree £ =2, or 3... “@-isogenies”
* Given random Ejand E2, smallest ¢ : E1 — E2 has degree poly(p)

X Typically, p > 2256
* Compose small isogenies to build bigger ones!

Isogenies with smooth degree (small prime factors):

on ° ... o @20 @1 represented by (‘compose’, @1, @2,... , ¥n), With deg(ei) small



Isogeny graph

e Fix small £ (say, £ = 2). Can easily compute £-isogenies



Isogeny graph

e Fix small 2 (say, € =2). Can easily compute £-isogenies

> k3

an isogeny of degree £ = an edge in a graph



Isogeny graph

e Fix small 2 (say, € =2). Can easily compute £-isogenies

/_,Es

N
AE4

an isogeny of degree £ = an edge in a graph

> k3
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e Fix small 2 (say, € =2). Can easily compute £-isogenies

E;

an isogeny of degree £ = an edge in a graph

1 0-1sogeny k, — E, = 3 £-1sogeny E, — E,
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Isogeny graph

e Fix small 2 (say, € =2). Can easily compute £-isogenies

e The 2-isogeny graph (supersingular...)

® (£ +1)-regular, connected (for supersingular curves)
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The ¢-isogeny path problem

?-isogeny path problem: Given E1 and E2, find an £-isogeny path from Ej to E»

* Path finding in a graph
* Hard! Best known algorithms = generic graph algorithms

* Typical meaning of “the isogeny problem"
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Isogeny-based cryptography

Reality: a mess

Weird scheme-

dependent variants of Security of

isogeny problems

The isogeny problem

cryptosystems

The isogeny problem CGL hash function (preimage)

SQISign (soundness)
CSIDH (key recovery)

One endomorphism

Vectorisation
SSI-T

SIDH (key recovery)
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[Jao, De Feo) PQCrypto 2011
[sogeny-based key exchange

/ NIST PQC alt-finalist
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The isogeny problem with

“torsion point information”... [Jao, De Feo] PQCrypto 2011

[sogeny-based key exchange
NIST PQC alt-finalist

SSI-T SIDH (key recovery)



SIDH

Jao-De Feo 2011
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Quotients

Let E be an elliptic curve

Let G a finite subgroup of E

Quotienting by G: there is a unique (separable) isogeny
p:E— E/G

with ker(p) = G
deg(p) = #G

- |

Given generators of G, if #G has only small prime factors, then ¢ can be
computed efficiently
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Fix reference elliptic curve Eo

Alice Bok
Random subgroup G of Eo Random subgroup H of Eo
Compute pa : Eo — Eo/G Compute ¢s : Eo — Eo/H
Let Ea = Eo/G Let Eg = Eo/H
Compute Eas = Eg/G Compute Ega = Ea/H
Eo ——— Eo/H=Ej

| |
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Fix reference elliptic curve Eo

Alice

‘ ~suhgroup G of Eo

Compute pa : Eo = EofG_

Cm oEag = EB/G

/.

G is not a subgroup of E;
goB(G) S|

Bob

Random subgroup H of Eo

—< ompute @B : Eo — Eo/H

———

Com ute Epa = Ea/H

=

—_

T

How to compute ¢3(G)?
Alice does not know ®B...
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Torsion

* The N-torsion of E is the subgroup
EIN]={PeE|N-P=P+P+..+P=0}
* E[N] = (Z/NZ)?

Idea:

* Alice picks a subgroup G of Eo[2"] €——— Many choices, good entropy

* Bob gives ppon Eo[2"] €—— 4 remains secret everywhere else...

* Alice can compute ¢5(G) €¢—— (1 compute shared secret Eqg = Eg/0p(G)



SIDH

Fix: an elliptic curve Eo
Generators P2, Q2 of Eo[2n] = (Z/2nZ)?
Generators P3, Qs of Eo[3m] = (Z/3mZ)?2

Alice Bob

Random subgroup G of Eo[2"] Random subgroup H of Eo[3™]
Compute @pa : Eo — Eo/G Compute @s : Eo — Eo/H
Let Ea = Eo/G pa(P3), 94(Q3) et Ep = Eo/H
DB (P 2); ©B (Qz)

Compute Eag = Eg/ps(G) Compute Ega = Ea/pa(H)
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Birth of [Petit] breaking
SIDH “overstreched” SSI-T

[Galbraith, Petit, Silval] [de Quehen, Kutas, Leonard|,
Martindale, Panny, Petit, Stange]

Improving Petit’s method

an active attack

Standard SIDH parameters totally unaffected
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July 30 2022
eprint 2022/975

An efficient key recovery attack on S

Wouter Castryck, Thomas Decru

“Breaks SIKEp434 challenge in ten minutes”

\ A




Eurocrypt 2025 —“Isogeny 1” session

Efficient Key Recovery Attack on SIDH (Best Paper Award)
[Castryck, Decru]

A Direct Key Recovery Attack on SIDH (Honourable Mention)
[Maino, Martindale, Panny, Pope, W.]

Breaking SIDH in Polynomial Time (Honourable Mention)
[Robert]
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Main result of the attacks

Interpolating isogenies [CD, MMPPW, R]:
* letgp: E1— E> of degree d

e Let n> (loga(d) +1)/2, and (P, Q) is a basis of E1[2n]
* Given (d, P, Q, »(P), ¢(Q)), one can compute @(R) for any R € E1 in poly. time

* |[nterpolation: Knowing ¢ on a few points = Knowing ¢ everywhere

Corollary: The few points leaked by SIDH leak the full secret.
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Weird scheme-

Security of
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The isogeny problem CGL hash function (preimage)

One endomorphism SQISign (soundness)

Vectorisation
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Rundown of survivors

The isogeny path problem is unaffected
SQIsign [De Feo, Kohel, Leroux, Petit, W.| unaffected
= Signature scheme, most compact pk + sig of all PQ schemes
= Submitted to the NIST PQ signature call 2023
CSIDH [Castryck, Lange, Martindale, Panny, Renes] unaffected
= Key exchange very similar to Diffie-Hellman
Wide variety of CSIDH-inspired constructions
= “group action” cryptography
= Signatures, PRFs, threshold stuff, oblivious stuff...
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Fixing SIDH?

* Given (d, P, Q, »(P), (Q)), one can compute @(R) for any R € E1 in poly. time

Use random secret degree: instead of p(P), p(Q), send a- p(P),
MD-SIDH (Masked Degree) a- (Q) for random integer a: M-SIDH

* Fouotsa, Moriya, Petit. Eurocrypt 2023
* Huge cost: 4434 bytes public keys (vs. 197 bytes in SIKE)
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The isogeny problem

"Idealised” isogeny problem: Given E1 and E2, find an isogeny ¢ : E1 — E»

?-isogeny path problem: Given E1and E», find an £-isogeny path from E; to E>

e The £-isogeny path problem is the standard version of “the isogeny problem”
because... no other way to represent solution ¢ : E1 — E2 than as a path?

Strong restriction on @ because of technical obstacle

® How to represent anisogeny?
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Efficient representation of isogenies

How to represent an i1sogeny?

* an efficient representation of ¢: can evaluate ¢(P) in poly. time for any P

Examples:
* Small degree isogenies
* Compositions of small degree isogenies

* Linear combinations of compositions of small degree isogenies...
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Main result of the attacks

Interpolating isogenies [CD23, MMPPW23, Rob23]:
* letgp: E1— E> of degree d

e Let n> (loga(d) +1)/2, and (P, Q) is a basis of E1[2n]
* Given (d, P, Q, »(P), ¢(Q)), one can compute @(R) for any R € E1 in poly. time

* |[nterpolation: Knowing ¢ on a few points = Knowing ¢ everywhere

Corollary: (d, P, Q, o(P), »(Q)) is an efficient representation of ¢.
* “Interpolation representation” of ¢, or “HD representation”

* Universal! Given any efficient repr. of @, can compute its interpolation repr.
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The universal isogeny problem

The universal isogeny problem: Given Ej and E», find an isogeny ¢ : E1 — E>
represented by interpolation.

e No restriction on ¢ like in £-isogeny path: any ¢ can be a valid response

pgeny & £-isogeny path

|Page, W.] to appear
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From attacks to constructions

Interpolation representation: (d, P, Q, ¢(P), »(Q)) is an efficient repr. of @

* Powerful new tool How efficient is it?

New constructions are emerging

* SQIlsign HD |[Dartois, Leroux, Robert, W.]: signature scheme inspired by SQIsign
=) Faster, simpler signing
= |Improved security proof

* FESTA [Basso, Maino, Pope]: Fast Encryption from Supersingular Torsion Attacks



The attack

Isogenies in higher
dimension




Dual

Let E an elliptic curve over Fqg and N an integer

* Multiplication by N is an isogeny
IN]:E—>E:P— [N]JP=P+P+..+P



Dual

Let E an elliptic curve over Fqg and N an integer

* Multiplication by N is an isogeny
IN]:E—>E:P— [N]JP=P+P+..+P

* let p: E1 — E> be an isogeny



Dual

Let E an elliptic curve over Fqg and N an integer
* Multiplication by N is an isogeny

IN]:E—>E:P— [N]JP=P+P+..+P
* let p: E1 — E> be an isogeny

* Dual of ¢: unique isogeny ¢ : E» — E; such that

N\

@ o ¢ =|deg(p)]
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Abelian varieties

Elliptic curve: a curve that is also a group

Abelian surface: surface that is also a group

* Example: product E1 x E>
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Abelian varieties

Elliptic curve: a curve that is also a group

Abelian surface: surface that is also a group

* Example: product E1 x E>

Abelian variety: same but any dimension

* Example: product E1 x Eo x ... x Ej
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W. E1xEy > F1x Fo
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Isogenies between products

Every isogeny W : E1 x Eo — F1x Fais of the form

W. E1xEy > F1x Fo

(P, P,) N P P\ P;
P12 P22 P>

P11 Po1 o1 P _ [N] O
P12 P22 P2 P O [N]

* Given the kernel of a 2n-isogeny, can evaluate it in polynomial time

where ¢ : Ei— F;j

* |[tis an N-isogeny if
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Let ¢ : E1— E2 of degree 3m (Bob's secret)

Suppose 2n - 3m = g2 |s a square
Define W : E1x Ey — E1 x Ep as

If we can evaluate W, we can evaluate o:

' i rojection
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HD embedding of anisogeny

Let ¢ : E1— E2 of degree 3m (Bob's secret)

Suppose 2n - 3m = g2 |s a square
Define W : E1x Ey — E1 x Ep as

If we can evaluate W, we can evaluate o:

' ' rojection
E inclusion . ExE, W E x Es proj . E

P (P1, O) (@P1, p(P1)) p(P1)
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A

Let ¢ : E1— E> of degree 3m (Bob's secret) ¥ ° ¢ = [3m]

Suppose 2n - 3m = g2 |s a square
Define W : E1x Ey — E1 x Ep as

- ([a] -¢ >
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HD embedding of anisogeny

A

Let ¢ : E1— E> of degree 3m (Bob's secret) ¥ ° ¢ = [3m]

Suppose 2n - 3m = g2 |s a square
Define W : E1x Ey — E1 x Ep as

- ([a] -¢ >
¢ |a
Is It a 2n-Isogeny? 8.

([a] —é>_<[a] cﬁ>=<[a2]+[3m] 0 >=<[2n] o)
¢ lal -¢ |al O [a2] + [3m] O [27]
ker(W) ={ ([37]P, [alp(P)) | P < E1[2] }

Given ¢ on Ej[2n] (torsion information) = can compute ker(W) = can compute ¢
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4D embedding of anisogeny

2n — 3m not a square”? [Robert] has a solution
Suppose 2n - 3m = a2 + b2 is a sum of 2 squares...
Define W : EyxE1xExx Eo — Eyx Eyx Ep x Ep as

a b -9 O
b a 0 -9¢
» O a b
O ¢ -b a

It Is a 2n-Isogeny
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4D embedding of anisogeny

2n — 3m not a square”? [Robert] has a solution
Suppose 2n - 3m = a2 + b2 is a sum of 2 squares...
Define W : EyxE1xExx Eo — Eyx Eyx Ep x Ep as

a b -9 O
b a 0 -9¢
» O a b
O ¢ -b a

It Is a 2n-Isogeny
Isogeny in dimension 4

Many integers are sum of 2 squares... but not all
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8D embedding of anisogeny

e 2n — 3m not a sum of two square? [Robert] has another solution: Zarhin’s trick

* Every integer is a sum of 4 squares: 2" - 3m =32 + b2 + ¢c2 + d?

a -b -¢c -d -¢

b a d -c -0 O
c -d a b 0 e
d ¢ -b a e
@ a -b -c -d
@ O b a d -c
o, c -d a b
O
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Applications

* FESTA: Fast Encryption from Supersingular Torsion Attacks
= 2D isogenies for decryption
= Well-studied, “Richelot isogenies”, efficient

= Good implementations available

* SQlsign HD: signhature scheme inspired by SQIsign
= 4D isogenies for verification
= Not well studied
™ Previous literature says it can be done in polynomial time...

= Back-of-the-envelope suggests it will be practical™



