Isogeny-based cryptography After the Snap

Benjamin Wesolowski, CNRS and ENS de Lyon
16 August 2023, PQCrypto 2023, College Park, MD, USA

Isogeny crypto

 Elliptic curves, isogenies, computational problems

Elliptic curves

Elliptic curve over \mathbb{F}_{q} : solutions (x, y) in \mathbb{F}_{q} of

$$
y^{2}=x^{3}+a x+b
$$

$E\left(\mathbb{F}_{q}\right)$ is an additive group

Elliptic curves

Elliptic curve over \mathbb{F}_{q} : solutions (x, y) in \mathbb{F}_{q} of

$$
y^{2}=x^{3}+a x+b
$$

$E\left(\mathbb{F}_{q}\right)$ is an additive group
Isogeny: a map

$$
\varphi: E_{1} \rightarrow E_{2}
$$

which preserves certain structures. In particular, it is a group homomorphism with a finite kernel

Elliptic curves

Elliptic curve over \mathbb{F}_{q} : solutions (x, y) in \mathbb{F}_{q} of

$$
y^{2}=x^{3}+a x+b
$$

$E\left(\mathbb{F}_{q}\right)$ is an additive group
Isogeny: a map

$$
\varphi: E_{1} \rightarrow E_{2}
$$

which preserves certain structures. In particular, it is a group homomorphism with a finite kernel
The degree* is $\operatorname{deg}(\varphi)=\# \operatorname{ker}(\varphi)$

* for separable isogenies

Elliptic curves

Elliptic curve over \mathbb{F}_{q} : solutions (x, y) in \mathbb{F}_{q} of

$$
y^{2}=x^{3}+a x+b
$$

$E\left(\mathbb{F}_{q}\right)$ is an additive group
Isogeny: a map

$$
\varphi: E_{1} \rightarrow E_{2}
$$

which preserves certain structures. In particular, it is a group homomorphism with a finite kernel
The degree* is $\operatorname{deg}(\varphi)=\# \operatorname{ker}(\varphi)$

* for separable isogenies
- $\operatorname{deg}(\varphi \circ \psi)=\operatorname{deg}(\varphi) \cdot \operatorname{deg}(\psi)$

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny φ : $E_{1} \rightarrow E_{2}$

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$

- Cryptosystems "based on" the isogeny problem?

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$

- Cryptosystems "based on" the isogeny problem?

Expectations: cryptosystems as secure as isogeny problem is hard

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$

- Cryptosystems "based on" the isogeny problem?

Expectations: cryptosystems as secure as isogeny problem is hard

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$

- Cryptosystems "based on" the isogeny problem?

Expectations: cryptosystems as secure as isogeny problem is hard

post-quantum cryptography

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny φ : $E_{1} \rightarrow E_{2}$

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny φ : $E_{1} \rightarrow E_{2}$

- The solution φ is an isogeny...

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny φ : $E_{1} \rightarrow E_{2}$

- The solution φ is an isogeny...
- How to represent an isogeny?

The isogeny problem

Isogeny problem: Given two elliptic curves E_{1} and E_{2}, find an isogeny φ : $E_{1} \rightarrow E_{2}$

- The solution φ is an isogeny...
- How to represent an isogeny?
- Hint: $\operatorname{ker}(\varphi)$ determines φ...

Efficient isogenies

- Given $\operatorname{ker}(\varphi)$ (list of points), can evaluate φ in poly time - Vélu's formulae \checkmark Isogenies of small degree $\ell=2$, or 3 ... " ℓ-isogenies"

Efficient isogenies

- Given $\operatorname{ker}(\varphi)$ (list of points), can evaluate φ in poly time - Vélu's formulae \checkmark Isogenies of small degree $\ell=2$, or 3 ... " ℓ-isogenies"
- Given random E_{1} and E_{2}, smallest $\varphi: E_{1} \rightarrow E_{2}$ has degree poly(p)

X Typically, p>2256

Efficient isogenies

- Given $\operatorname{ker}(\varphi)$ (list of points), can evaluate φ in poly time - Vélu's formulae \checkmark Isogenies of small degree $\ell=2$, or 3 ... " ℓ-isogenies"
- Given random E_{1} and E_{2}, smallest $\varphi: E_{1} \rightarrow E_{2}$ has degree poly(p)

X Typically, p>2256

- Compose small isogenies to build bigger ones!
\checkmark Isogenies with smooth degree (small prime factors):
$\varphi_{n} \circ \ldots \circ \varphi_{2} \circ \varphi_{1}$ represented by ('compose', $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$), with deg(φ_{i}) small

Isogeny graph

- Fix small ℓ (say, $\ell=2$). Can easily compute ℓ-isogenies

Isogeny graph

- Fix small ℓ (say, $\ell=2$). Can easily compute ℓ-isogenies

$$
E_{1} \longrightarrow E_{2}
$$

an isogeny of degree $\ell=$ an edge in a graph

Isogeny graph

- Fix small ℓ (say, $\ell=2$). Can easily compute ℓ-isogenies

an isogeny of degree $\ell=$ an edge in a graph

Isogeny graph

- Fix small ℓ (say, $\ell=2$). Can easily compute ℓ-isogenies

an isogeny of degree $\ell=$ an edge in a graph

$$
\exists \ell \text {-isogeny } E_{1} \rightarrow E_{2} \Rightarrow \exists \ell \text {-isogeny } E_{2} \rightarrow E_{1}
$$

Isogeny graph

- Fix small ℓ (say, $\ell=2$). Can easily compute ℓ-isogenies
- The ℓ-isogeny graph (supersingular...)

Isogeny graph

- Fix small ℓ (say, $\ell=2$). Can easily compute ℓ-isogenies
- The ℓ-isogeny graph (supersingular...)

Isogeny graph

- Fix small ℓ (say, $\ell=2$). Can easily compute ℓ-isogenies
- The ℓ-isogeny graph (supersingular...)

- ($\ell+1$)-regular, connected (for supersingular curves)

The ℓ-isogeny path problem

ℓ-isogeny path problem: Given E_{1} and E_{2}, find an ℓ-isogeny path from E_{1} to E_{2}

The ℓ-isogeny path problem

ℓ-isogeny path problem: Given E_{1} and E_{2}, find an ℓ-isogeny path from E_{1} to E_{2}

- Path finding in a graph
- Hard! Best known algorithms = generic graph algorithms
- Typical meaning of "the isogeny problem"

Isogeny-based cryptography

Expectations: cryptosystems as secure as isogeny problem is hard

Security of cryptosystems

Post-quantum
cryptography

Isogeny-based cryptography

Reality: a mess

Isogeny-based cryptography

Reality: a mess

Isogeny-based cryptography

Reality: a mess

The isogeny problem $=$ CGL hash function (preimage)
One endomorphism = SQISign (soundness)

Isogeny-based cryptography

Reality: a mess

Isogeny-based cryptography

Reality: a mess

The isogeny problem $=$ CGL hash function (preimage)
One endomorphism = SQISign (soundness)
Vectorisation = CSIDH (key recovery)
SSI-T $=$ SIDH (key recovery)

Isogeny-based cryptography

Isogeny-based cryptography

Reality: a mess

Isogeny-based cryptography

Reality: a mess

SIDH
 Jao-De Feo 2011

Quotients

- Let E be an elliptic curve
- Let G a finite subgroup of E

Quotients

- Let E be an elliptic curve
- Let G a finite subgroup of E
- Quotienting by G: there is a unique (separable) isogeny

$$
\varphi: E \rightarrow E / G
$$

with $\operatorname{ker}(\varphi)=G$

Quotients

- Let E be an elliptic curve
- Let G a finite subgroup of E
- Quotienting by G: there is a unique (separable) isogeny

$$
\varphi: E \rightarrow E / G
$$

with $\operatorname{ker}(\varphi)=G$

- $\operatorname{deg}(\varphi)=\# G$

Quotients

- Let E be an elliptic curve
- Let G a finite subgroup of E
- Quotienting by G: there is a unique (separable) isogeny

$$
\varphi: E \rightarrow E / G
$$

with $\operatorname{ker}(\varphi)=G$

- $\operatorname{deg}(\varphi)=\# G$
- Given generators of G, if \#G has only small prime factors, then φ can be computed efficiently

SIDH

Fix reference elliptic curve Eo Alice Bob

SIDH

Fix reference elliptic curve Eo Alice

Random subgroup G of E_{0}

SIDH

Fix reference elliptic curve Eo Alice

Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$

SIDH

Fix reference elliptic curve Eo Alice

Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$

SIDH

Fix reference elliptic curve Eo Alice

Bob
Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$

SIDH

Fix reference elliptic curve E_{0} Alice

Bob
Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$

Let $E_{A}=E_{0} / G$

$$
\begin{aligned}
& E_{\mathrm{o}} \\
& E_{A}=E_{\mathrm{o}} / G
\end{aligned}
$$

SIDH

Fix reference elliptic curve E_{0} Alice

Bob

Random subgroup G of E_{0}
Random subgroup H of E_{o}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$

$$
\begin{aligned}
& E_{\mathrm{O}} \\
& \varphi_{A} \downarrow \\
& E_{A}=E_{\mathrm{o}} / G
\end{aligned}
$$

SIDH

Fix reference elliptic curve E_{0} Alice

Bob

Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$

Random subgroup H of E_{0}
Compute $\varphi_{B}: E_{0} \rightarrow E_{0} / H$

$$
\begin{aligned}
& E_{\mathrm{o}} \\
& E_{A}=E_{\mathrm{o}} / G
\end{aligned}
$$

SIDH

Fix reference elliptic curve E_{0} Alice

Bob

Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$

Random subgroup H of E_{0}
Compute $\varphi_{B}: E_{0} \rightarrow E_{0} / H$
Let $E_{B}=E_{0} / H$

SIDH

Fix reference elliptic curve E_{0} Alice

Bob

Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$

$$
\begin{aligned}
& E_{\mathrm{O}} \\
& E_{A}=E_{\mathrm{O}} / G
\end{aligned}
$$

Random subgroup H of E_{0}
Compute $\varphi_{B}: E_{0} \rightarrow E_{0} / H$
Let $E_{B}=E_{0} / H$

SIDH

Fix reference elliptic curve E_{0} Alice

Bob

Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$

Random subgroup H of E_{0}
Compute $\varphi_{B}: E_{0} \rightarrow E_{0} / H$
Let $E_{B}=E_{0} / H$

$$
\begin{aligned}
& E_{\mathrm{O}} \xrightarrow{\varphi_{B}} E_{\mathrm{o}} / H=E_{B} \\
& \varphi_{A} \\
& \downarrow \\
& E_{A}=E_{\mathrm{O}} / G
\end{aligned}
$$

SIDH

Fix reference elliptic curve E_{0}

Alice

Bob

Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$

Random subgroup H of E_{0}
Compute $\varphi_{B}: E_{0} \rightarrow E_{0} / H$
Let $E_{B}=E_{0} / H$

SIDH

Fix reference elliptic curve E_{0}

Alice

Bob

Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$
Compute $\boldsymbol{E}_{\boldsymbol{A B}}=E_{B} / G$

Random subgroup H of E_{0}
Compute $\varphi_{B}: E_{0} \rightarrow E_{0} / H$
Let $E_{B}=E_{0} / H$

SIDH

Fix reference elliptic curve E_{0}

Alice

Bob

Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$
Compute $\boldsymbol{E}_{\boldsymbol{A B}}=E_{B} / G$

Random subgroup H of E_{0}
Compute $\varphi_{B}: E_{0} \rightarrow E_{0} / H$
Let $E_{B}=E_{0} / H$
Compute $\boldsymbol{E}_{\mathbf{B A}}=E_{A} / H$

SIDH

Fix reference elliptic curve E_{0}

Alice

Bob

Random subgroup G of E_{0}
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$
Let $E_{A}=E_{0} / G$
Compute $\boldsymbol{E}_{\boldsymbol{A B}}=E_{B} / G$

G is not a subgroup of E_{B}

$$
\varphi_{B}(G) \text { is! }
$$

Random subgroup H of E_{0}
Compute $\varphi_{B}: E_{0} \rightarrow E_{0} / H$
Let $E_{B}=E_{0} / H$
Compute $\boldsymbol{E}_{\mathbf{B A}}=E_{A} / H$

SIDH

Fix reference elliptic curve E_{0}

Alice

Bob

Torsion

- The N-torsion of E is the subgroup

$$
E[N]=\{P \in E \mid N \cdot P=P+P+\ldots+P=0\}
$$

Torsion

- The N-torsion of E is the subgroup

$$
E[N]=\{P \in E \mid N \cdot P=P+P+\ldots+P=0\}
$$

- $E[N] \cong(\mathbb{Z} / N \mathbb{Z})^{2}$

Torsion

- The N-torsion of E is the subgroup

$$
E[N]=\{P \in E \mid N \cdot P=P+P+\ldots+P=0\}
$$

- $E[N] \cong(\mathbb{Z} / N \mathbb{Z})^{2}$

Idea:

- Alice picks a subgroup G of $E_{o}\left[2^{n}\right]$
- Bob gives φ_{B} on $E_{o}\left[2^{n}\right]$
- Alice can compute $\varphi_{B}(G)$

Torsion

- The N-torsion of E is the subgroup

$$
E[N]=\{P \in E \mid N \cdot P=P+P+\ldots+P=0\}
$$

- $E[N] \cong(\mathbb{Z} / N \mathbb{Z})^{2}$

Idea:

- Alice picks a subgroup G of $E_{0}\left[2^{n}\right]$ Many choices, good entropy
- Bob gives φ_{B} on $E_{0}\left[2^{n}\right]$
- Alice can compute $\varphi_{B}(G)$

Torsion

- The N-torsion of E is the subgroup

$$
E[N]=\{P \in E \mid N \cdot P=P+P+\ldots+P=0\}
$$

- $E[N] \cong(\mathbb{Z} / N \mathbb{Z})^{2}$

Idea:

- Alice picks a subgroup G of $E_{0}\left[2^{n}\right]$ - Many choices, good entropy
- Bob gives φ_{B} on $E_{0}\left[2^{n}\right]$
- Alice can compute $\varphi_{B}(G)$

Torsion

- The N-torsion of E is the subgroup

$$
E[N]=\{P \in E \mid N \cdot P=P+P+\ldots+P=0\}
$$

- $E[N] \cong(\mathbb{Z} / N \mathbb{Z})^{2}$

Idea:

- Alice picks a subgroup G of $E_{0}\left[2^{n}\right]$ - Many choices, good entropy
- Bob gives φ_{B} on $E_{0}\left[2^{n}\right]$ φ_{B} remains secret everywhere else...
- Alice can compute $\varphi_{B}(G)$
 Can compute shared secret $\boldsymbol{E}_{\boldsymbol{A B}}=E_{B} / \varphi_{B}(G)$

SIDH

Fix: an elliptic curve E_{0}
Generators P_{2}, Q_{2} of $E_{0}\left[2^{n}\right] \cong\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)^{2}$
Generators P_{3}, Q_{3} of $E_{0}[3 m] \cong(\mathbb{Z} / 3 m \mathbb{Z})^{2}$

Alice

Bob

Random subgroup G of $E_{0}\left[2^{n}\right]$
Compute $\varphi_{A}: E_{0} \rightarrow E_{0} / G$

$$
\text { Let } E_{A}=E_{0} / G
$$

$$
\xrightarrow[E_{B}, \varphi_{B}\left(P_{2}\right), \varphi_{B}\left(Q_{2}\right)]{E_{A}, \varphi_{A}\left(P_{3}\right), \varphi_{A}\left(Q_{3}\right)}
$$

Random subgroup H of $E_{0}\left[3^{m}\right]$
Compute $\varphi_{B}: E_{0} \rightarrow E_{0} / H$
Let $E_{B}=E_{0} / H$

Compute $\boldsymbol{E}_{\mathbf{B A}}=E_{A} / \varphi_{A}(H)$

The SSI-T problem

Context:

- two elliptic curves E_{0} and E_{1}
- an isogeny $\varphi: E_{0} \rightarrow E_{1}$ (say, of degree $3 m$ like Bob's isogeny)
- an integer N coprime to $\operatorname{deg}(\varphi)$ (say, $N=2^{n} \ldots$..)
- generators P and Q of $E_{0}[N] \cong(\mathbb{Z} / N \mathbb{Z})^{2}$

SSI-T: Given $E_{0}, E_{1}, P, Q, \varphi(P)$ and $\varphi(Q)$, find the isogeny $\varphi: E_{0} \rightarrow E_{1}$

The SSI-T problem

Context:

- two elliptic curves E_{0} and E_{1}
- an isogeny $\varphi: E_{0} \rightarrow E_{1}$ (say, of degree $3 m$ like Bob's isogeny)
- an integer N coprime to $\operatorname{deg}(\varphi)$ (say, $N=2^{n}$...)
- generators P and Q of $E_{0}[N] \cong(\mathbb{Z} / N \mathbb{Z})^{2}$
"torsion point information"
SSI-T: Given $E_{0}, E_{1}, P, Q, \varphi(P)$ and $\varphi(Q)$, find the isogeny $\varphi: E_{0} \rightarrow E_{1}$

The SSI-T problem

Context:

- two elliptic curves E_{0} and E_{1}
- an isogeny $\varphi: E_{0} \rightarrow E_{1}$ (say, of degree $3 m$ like Bob's isogeny)
- an integer N coprime to $\operatorname{deg}(\varphi)$ (say, $N=2^{n}$...)
- generators P and Q of $E_{0}[N] \cong(\mathbb{Z} / N \mathbb{Z})^{2}$
"torsion point information"
SSI-T: Given $E_{0}, E_{1}, P, Q, \varphi(P)$ and $\varphi(Q)$, find the isogeny $\varphi: E_{0} \rightarrow E_{1}$

SIIDH key recovery \Leftrightarrow SSI-T

Torsion point information: a weakness?

Birth of
SIDH

Torsion point information: a weakness?

Birth of SIDH

[Galbraith, Petit, Silva] an active attack

Torsion point information: a weakness?

Torsion point information: a weakness?

Torsion point information: a weakness?

Standard SIDH parameters totally unaffected

The Snap

July 302022

July 302022

eprint 2022/975

July 302022 eprint 2022/975

An efficient key recovery attack on SIIDH

July 302022
 eprint 2022/975

An efficient key recovery attack on SIIDH

Wouter Castryck, Thomas Decru

July 302022

 eprint 2022/975
An efficient key recovery attack on SIIDH

Wouter Castryck, Thomas Decru
"Breaks SIKEp434 challenge in ten minutes"

Eurocrypt 2023-"Isogeny 1" session

Efficient Key Recovery Attack on SIDH (Best Paper Award)
[Castryck, Decru]

A Direct Key Recovery Attack on SIDH (Honourable Mention)
[Maino, Martindale, Panny, Pope, W.]

Breaking SIDH in Polynomial Time (Honourable Mention)
[Robert]

Main result of the attacks

Interpolating isogenies [CD, MMPPW, R]:

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let $n>\left(\log _{2}(d)+1\right) / 2$, and (P, Q) is a basis of $E_{1}\left[2^{n}\right]$
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time

Main result of the attacks

Interpolating isogenies [CD, MMPPW, R]:

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let $n>\left(\log _{2}(d)+1\right) / 2$, and (P, Q) is a basis of $E_{1}\left[2^{n}\right]$
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Main result of the attacks

Interpolating isogenies [CD, MMPPW, R]:

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let $n>\left(\log _{2}(d)+1\right) / 2$, and (P, Q) is a basis of $E_{1}\left[2^{n}\right]$
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: The few points leaked by SIDH leak the full secret.

Isogeny-based cryptography

Body count

Isogeny-based cryptography

Body count

$\begin{aligned} \text { The isogeny problem } & =\text { CGL hash function (preimage) } \\ \text { One endomorphism } & =\text { SQISign (soundness) } \\ \text { Vectorisation } & =\text { CSIDH (key recovery) } \\ \text { SSIT } & =\text { SHDH (keyrecovery) }\end{aligned}$

Isogeny-based cryptography

Body count

$\begin{aligned} \text { The isogeny problem } & =\text { CGL hash function (preimage) } \\ \text { One endomorphism } & =\text { SQISign (soundness) } \\ \text { Vectorisation } & =\text { CSIDH (key recovery) } \\ \text { SSIT } & =\text { SHDH (keyrecovery) }\end{aligned}$

B-SHDH
k-SHOH
-Séta
SHeais

Rundown of survivors

Rundown of survivors

- The isogeny path problem is unaffected

Rundown of survivors

- The isogeny path problem is unaffected
- SQIsign [De Feo, Kohel, Leroux, Petit, W.] unaffected
$ص$ Signature scheme, most compact pk + sig of all PQ schemes
\Rightarrow Submitted to the NIST PQ signature call 2023

Rundown of survivors

- The isogeny path problem is unaffected
- SQIsign [De Feo, Kohel, Leroux, Petit, W.] unaffected
$ص$ Signature scheme, most compact pk + sig of all PQ schemes
\Rightarrow Submitted to the NIST PQ signature call 2023
- CSIDH [Castryck, Lange, Martindale, Panny, Renes] unaffected
\Rightarrow Key exchange very similar to Diffie-Hellman

Rundown of survivors

- The isogeny path problem is unaffected
- SQIsign [De Feo, Kohel, Leroux, Petit, W.] unaffected
$ص$ Signature scheme, most compact pk + sig of all PQ schemes
- Submitted to the NIST PQ signature call 2023
- CSIDH [Castryck, Lange, Martindale, Panny, Renes] unaffected
\Rightarrow Key exchange very similar to Diffie-Hellman
- Wide variety of CSIDH-inspired constructions

■ "group action" cryptography
$ص$ Signatures, PRFs, threshold stuff, oblivious stuff...

Fixing SIDH?

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let n - $\left.\log \log _{2}(d)+1\right) / 2$ and (D, Q) is a basis of $E_{1}[2 n$
- Given (d, $P, Q, \varphi(P), \varphi(Q)$), one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time

Fixing SIDH?

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let $n>\left(\log _{2}(-1)+1\right) / 2$ and (n, Q) is a basis of E1[2n
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time \uparrow
Use random secret degree: MD-SIDH (Masked Degree)

Fixing SIDH?

Interpolating isogenies [CD

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Le: $n>\left(\log _{2}(\alpha)+1\right) / 2$, and (P, Q) is a basis of $E_{1}[2 n$
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time

Instead of $\varphi(P), \varphi(Q)$, send $a \cdot \varphi(P)$, $a \cdot \varphi(Q)$ for random integer $a:$ M-SIDH

Fixing SIDH?

Interpolating isogenies [CD

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let $n>\left(\log _{2}(\alpha)+1\right) / 2$, and (P, Q) is a basis of $E_{1}[2 n]$
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time Use random secret degree:
MD-SIDH (Masked Degree)
 $a \cdot \varphi(Q)$ for random integer $a: \mathbf{M}-$ SIDH
- Fouotsa, Moriya, Petit. Eurocrypt 2023

Fixing SIDH?

Interpolating isogenies [CD

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let $n>\left(\log _{2}(-1)+1\right) / 2$ and (n, Q) is a basis of $E_{1}[2 n]$
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time

Instead of $\varphi(P), \varphi(Q)$, send $a \cdot \varphi(P)$, $a \cdot \varphi(Q)$ for random integer $a:$ M-SIDH

- Fouotsa, Moriya, Petit. Eurocrypt 2023
- Huge cost: 4434 bytes public keys (vs. 197 bytes in SIKE)

Representing isogenies

 Back to the foundations

The isogeny problem

"Idealised" isogeny problem: Given E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$
ℓ-isogeny path problem: Given E_{1} and E_{2}, find an ℓ-isogeny path from E_{1} to E_{2}

The isogeny problem

"Idealised" isogeny problem: Given E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$
ℓ-isogeny path problem: Given E_{1} and E_{2}, find an ℓ-isogeny path from E_{1} to E_{2}

- The ℓ-isogeny path problem is the standard version of "the isogeny problem" because... no other way to represent solution $\varphi: E_{1} \rightarrow E_{2}$ than as a path?
\Rightarrow Strong restriction on φ because of technical obstacle

The isogeny problem

"Idealised" isogeny problem: Given E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$
ℓ-isogeny path problem: Given E_{1} and E_{2}, find an ℓ-isogeny path from E_{1} to E_{2}

- The ℓ-isogeny path problem is the standard version of "the isogeny problem" because... no other way to represent solution $\varphi: E_{1} \rightarrow E_{2}$ than as a path?
\Rightarrow Strong restriction on φ because of technical obstacle
- How to represent an isogeny?

Efficient representation of isogenies

How to represent an isogeny?

- an efficient representation of φ : can evaluate $\varphi(P)$ in poly. time for any P

Efficient representation of isogenies

How to represent an isogeny?

- an efficient representation of φ : can evaluate $\varphi(P)$ in poly. time for any P

Examples:

- Small degree isogenies
- Compositions of small degree isogenies
- Linear combinations of compositions of small degree isogenies...

Main result of the attacks

Interpolating isogenies [CD23, MMPPW23, Rob23]:

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let $n>\left(\log _{2}(d)+1\right) / 2$, and (P, Q) is a basis of $E_{1}\left[2^{n}\right]$
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Main result of the attacks

Interpolating isogenies [CD23, MMPPW23, Rob23]:

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let $n>\left(\log _{2}(d)+1\right) / 2$, and (P, Q) is a basis of $E_{1}\left[2^{n}\right]$
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: ($d, P, Q, \varphi(P), \varphi(Q))$ is an efficient representation of φ.

Main result of the attacks

Interpolating isogenies [CD23, MMPPW23, Rob23]:

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let $n>\left(\log _{2}(d)+1\right) / 2$, and (P, Q) is a basis of $E_{1}\left[2^{n}\right]$
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: ($d, P, Q, \varphi(P), \varphi(Q))$ is an efficient representation of φ.

- "Interpolation representation" of φ, or "HD representation"

Main result of the attacks

Interpolating isogenies [CD23, MMPPW23, Rob23]:

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree d
- Let $n>\left(\log _{2}(d)+1\right) / 2$, and (P, Q) is a basis of $E_{1}\left[2^{n}\right]$
- Given (d, $P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_{1}$ in poly. time
- Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: ($d, P, Q, \varphi(P), \varphi(Q)$) is an efficient representation of φ.

- "Interpolation representation" of φ, or "HD representation"
- Universal! Given any efficient repr. of φ, can compute its interpolation repr.

The universal isogeny problem

The universal isogeny problem: Given E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$ represented by interpolation.

The universal isogeny problem

The universal isogeny problem: Given E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$ represented by interpolation.

- No restriction on φ like in ℓ-isogeny path: any φ can be a valid response

The universal isogeny problem

The universal isogeny problem: Given E_{1} and E_{2}, find an isogeny $\varphi: E_{1} \rightarrow E_{2}$ represented by interpolation.

- No restriction on φ like in ℓ-isogeny path: any φ can be a valid response

Universall isogeny \Leftrightarrow-isogeny path

[Page, W.] to appear

From attacks to constructions

Interpolation representation: (d, P, Q, $\varphi(P), \varphi(Q)$) is an efficient repr. of φ

- Powerful new tool

From attacks to constructions

Interpolation representation: ($d, P, Q, \varphi(P), \varphi(Q)$) is an efficient repr. of φ

- Powerful new tool

New constructions are emerging

From attacks to constructions

Interpolation representation: $(d, P, Q, \varphi(P), \varphi(Q))$ is an efficient repr. of φ

- Powerful new tool

New constructions are emerging

- SQIsign HD [Dartois, Leroux, Robert, W.]: signature scheme inspired by SQIsign
\Rightarrow Faster, simpler signing
- Improved security proof

From attacks to constructions

Interpolation representation: $(d, P, Q, \varphi(P), \varphi(Q))$ is an efficient repr. of φ

- Powerful new tool

New constructions are emerging

- SQIsign HD [Dartois, Leroux, Robert, W.]: signature scheme inspired by SQIsign
\Rightarrow Faster, simpler signing
- Improved security proof
- FESTA [Basso, Maino, Pope]: Fast Encryption from Supersingular Torsion Attacks

From attacks to constructions

Interpolation representation: $(d, P, Q, \varphi(P), \varphi(Q))$ is an efficient repr. of φ

- Powerful new tool How efficient is it?

New constructions are emerging

- SQIsign HD [Dartois, Leroux, Robert, W.]: signature scheme inspired by SQIsign
\Rightarrow Faster, simpler signing
- Improved security proof
- FESTA [Basso, Maino, Pope]: Fast Encryption from Supersingular Torsion Attacks

The attack

Isogenies in higher

 dimension

Dual

Let E an elliptic curve over \mathbb{F}_{q} and N an integer

- Multiplication by N is an isogeny

$$
[N]: E \rightarrow E: P \longmapsto[N] P=P+P+\ldots+P
$$

Dual

Let E an elliptic curve over \mathbb{F}_{q} and N an integer

- Multiplication by N is an isogeny

$$
[N]: E \rightarrow E: P \longmapsto[N] P=P+P+\ldots+P
$$

- Let $\varphi: E_{1} \rightarrow E_{2}$ be an isogeny

Dual

Let E an elliptic curve over \mathbb{F}_{q} and N an integer

- Multiplication by N is an isogeny

$$
[N]: E \rightarrow E: P \longmapsto[N] P=P+P+\ldots+P
$$

- Let $\varphi: E_{1} \rightarrow E_{2}$ be an isogeny
- Dual of φ : unique isogeny $\hat{\varphi}: E_{2} \rightarrow E_{1}$ such that

$$
\hat{\varphi} \circ \varphi=[\operatorname{deg}(\varphi)]
$$

Abelian varieties

Elliptic curve: a curve that is also a group

Abelian varieties

Elliptic curve: a curve that is also a group

Abelian surface: surface that is also a group

- Example: product $E_{1} \times E_{2}$

Abelian varieties

Elliptic curve: a curve that is also a group

Abelian surface: surface that is also a group

- Example: product $E_{1} \times E_{2}$

Abelian variety: same but any dimension

- Example: product $E_{1} \times E_{2} \times \ldots \times E_{n}$

Isogenies between products

$\Psi: E_{1} \times E_{2} \longrightarrow F_{1} \times F_{2}$

Isogenies between products

$$
\Psi: E_{1} \times E_{2} \longrightarrow F_{1} \times F_{2}
$$

$$
\left(P_{1}, P_{2}\right) \quad \longmapsto
$$

Isogenies between products

$$
\left(P_{1}, P_{2}\right) \quad \longmapsto
$$

Isogenies between products

$$
\left(P_{1}, P_{2}\right) \quad \longmapsto \quad\left(\varphi_{11}\left(P_{1}\right), ?\right)
$$

Isogenies between products

$$
\left(P_{1}, P_{2}\right) \quad \longmapsto \quad\left(\varphi_{11}\left(P_{1}\right)+\varphi_{21}\left(P_{2}\right), ?\right)
$$

Isogenies between products

$$
\left(P_{1}, P_{2}\right) \quad \longmapsto \quad\left(\varphi_{11}\left(P_{1}\right)+\varphi_{21}\left(P_{2}\right), \varphi_{12}\left(P_{1}\right)+\varphi_{22}\left(P_{2}\right)\right)
$$

Isogenies between products

$$
\begin{aligned}
\left(P_{1}, P_{2}\right) & \left(\varphi_{11}\left(P_{1}\right)+\varphi_{21}\left(P_{2}\right), \varphi_{12}\left(P_{1}\right)+\varphi_{22}\left(P_{2}\right)\right) \\
& =\left(\begin{array}{cc}
\varphi_{11} & \varphi_{21} \\
\varphi_{12} & \varphi_{22}
\end{array}\right) \cdot\binom{P_{1}}{P_{2}}
\end{aligned}
$$

Isogenies between products

Every isogeny $\Psi: E_{1} \times E_{2} \rightarrow F_{1} \times F_{2}$ is of the form

$$
\begin{aligned}
& \Psi: E_{1} \times E_{2} \longrightarrow F_{1} \times F_{2} \\
& \left(P_{1}, P_{2}\right) \quad \longmapsto \quad\left(\begin{array}{ll}
\varphi_{11} & \varphi_{21} \\
\varphi_{12} & \varphi_{22}
\end{array}\right) \cdot\binom{P_{1}}{P_{2}}
\end{aligned}
$$

where $\varphi_{i j}: E_{i} \rightarrow F_{j}$

Isogenies between products

Every isogeny $\Psi: E_{1} \times E_{2} \rightarrow F_{1} \times F_{2}$ is of the form

$$
\begin{aligned}
& \Psi: E_{1} \times E_{2} \longrightarrow F_{1} \times F_{2} \\
& \left(P_{1}, P_{2}\right) \quad \longmapsto \quad\left(\begin{array}{ll}
\varphi_{11} & \varphi_{21} \\
\varphi_{12} & \varphi_{22}
\end{array}\right) \cdot\binom{P_{1}}{P_{2}}
\end{aligned}
$$

where $\varphi_{i j}: E_{i} \rightarrow F_{j}$

- It is an \boldsymbol{N}-isogeny if

$$
\left(\begin{array}{ll}
\varphi_{11} & \varphi_{21} \\
\varphi_{12} & \varphi_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
\hat{\varphi}_{11} & \hat{\varphi}_{12} \\
\hat{\varphi}_{21} & \hat{\varphi}_{22}
\end{array}\right)=\left(\begin{array}{cc}
{[N]} & 0 \\
0 & {[N]}
\end{array}\right)
$$

Isogenies between products

Every isogeny $\Psi: E_{1} \times E_{2} \rightarrow F_{1} \times F_{2}$ is of the form

$$
\begin{aligned}
& \Psi: E_{1} \times E_{2} \longrightarrow F_{1} \times F_{2} \\
& \left(P_{1}, P_{2}\right) \quad \longmapsto \quad\left(\begin{array}{ll}
\varphi_{11} & \varphi_{21} \\
\varphi_{12} & \varphi_{22}
\end{array}\right) \cdot\binom{P_{1}}{P_{2}}
\end{aligned}
$$

where $\varphi_{i j}: E_{i} \rightarrow F_{j}$

- It is an \boldsymbol{N}-isogeny if

$$
\left(\begin{array}{ll}
\varphi_{11} & \varphi_{21} \\
\varphi_{12} & \varphi_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
\hat{\varphi}_{11} & \hat{\varphi}_{12} \\
\hat{\varphi}_{21} & \hat{\varphi}_{22}
\end{array}\right)=\left(\begin{array}{cc}
{[N]} & 0 \\
0 & {[N]}
\end{array}\right)
$$

- Given the kernel of a 2^{n}-isogeny, can evaluate it in polynomial time

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)
- Suppose $2^{n}-3^{m}=a^{2}$ is a square

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

- If we can evaluate Ψ, we can evaluate φ :

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

- If we can evaluate Ψ, we can evaluate φ :

$$
E_{1} \xrightarrow{\text { inclusion }} E_{1} \times E_{2} \xrightarrow{\Psi} E_{1} \times E_{2} \xrightarrow{\text { projection }} E_{2}
$$

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

- If we can evaluate Ψ, we can evaluate φ :

$$
\underset{\substack{E_{1} \\ P_{1}}}{\substack{\text { inclusion }}} E_{1} \times E_{2} \xrightarrow{\Psi} E_{1} \times E_{2} \xrightarrow{\text { projection }} E_{2}
$$

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

- If we can evaluate Ψ, we can evaluate φ :

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

- If we can evaluate Ψ, we can evaluate φ :

$$
\underset{\substack{\text { (} \\ P_{1}}}{E_{1} \xrightarrow{\text { inclusion }} E_{1} \times E_{2} \xrightarrow{\left(P_{1}, 0\right)} \underset{\left(a P_{1}, \varphi\left(P_{1}\right)\right)}{E_{1} \times E_{2}} \xrightarrow{\text { projection }} E_{2} .}
$$

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

- If we can evaluate Ψ, we can evaluate φ :

$$
\begin{aligned}
& E_{1} \xrightarrow{\text { inclusion }} E_{1} \times E_{2} \xrightarrow{\Psi} E_{1} \times E_{2} \xrightarrow{\text { projection }} E_{2} \\
& P_{1} \quad\left(P_{1}, 0\right) \quad\left(a P_{1}, \varphi\left(P_{1}\right)\right) \quad \varphi\left(P_{1}\right)
\end{aligned}
$$

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as
- Is it a 2^{n}-isogeny?

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret)
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as
- Is it a 2^{n}-isogeny?

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right) \cdot\left(\begin{array}{cc}
{[a]} & \hat{\varphi} \\
-\varphi & {[a]}
\end{array}\right)
$$

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret) $\hat{\varphi} \circ \varphi=[3 m]$
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as
- Is it a $2^{\text {n-isogeny? }}$

$$
\Psi=\left(\begin{array}{cc}
{[\mathrm{a}]} & -\hat{\varphi} \\
\varphi & {[\mathrm{a}]}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right) \cdot\left(\begin{array}{cc}
{[a]} & \hat{\varphi} \\
-\varphi & {[a]}
\end{array}\right)=\left(\begin{array}{cc}
{\left[a^{2}\right]+[3 m]} & 0 \\
0 & {\left[a^{2}\right]+[3 m]}
\end{array}\right)
$$

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree $3 m$ (Bob's secret) $\hat{\varphi} \circ \varphi=[3 m]$
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as
- Is it a $2^{\text {n-isogeny? }}$

$$
\Psi=\left(\begin{array}{cc}
{[\mathrm{a}]} & -\hat{\varphi} \\
\varphi & {[\mathrm{a}]}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right) \cdot\left(\begin{array}{cc}
{[a]} & \hat{\varphi} \\
-\varphi & {[a]}
\end{array}\right)=\left(\begin{array}{cc}
{\left[a^{2}\right]+\left[3^{m}\right]} & 0 \\
0 & {\left[a^{2}\right]+\left[3^{m}\right]}
\end{array}\right)=\left(\begin{array}{cc}
{\left[2^{n}\right]} & 0 \\
0 & {\left[2^{n}\right]}
\end{array}\right)
$$

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret) $\hat{\varphi} \circ \varphi=[3 m]$
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as
- Is it a $2^{\text {n-isogeny? }}$

$$
\Psi=\left(\begin{array}{cc}
{[\mathrm{a}]} & -\hat{\varphi} \\
\varphi & {[\mathrm{a}]}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right) \cdot\left(\begin{array}{cc}
{[a]} & \hat{\varphi} \\
-\varphi & {[a]}
\end{array}\right)=\left(\begin{array}{cc}
{\left[a^{2}\right]+\left[3^{m}\right]} & 0 \\
0 & {\left[a^{2}\right]+\left[3^{m}\right]}
\end{array}\right)=\left(\begin{array}{cc}
{\left[2^{n}\right]} & 0 \\
0 & {\left[2^{n}\right]}
\end{array}\right)
$$

- $\operatorname{ker}(\Psi)=\left\{\left(\left[3^{m}\right] P,[a] \varphi(P)\right) \mid P \in E_{1}\left[2^{n}\right]\right\}$

HD embedding of an isogeny

- Let $\varphi: E_{1} \rightarrow E_{2}$ of degree 3^{m} (Bob's secret) $\hat{\varphi} \circ \varphi=[3 m]$
- Suppose $2^{n}-3^{m}=a^{2}$ is a square
- Define $\Psi: E_{1} \times E_{2} \rightarrow E_{1} \times E_{2}$ as
- Is it a $2^{n-i s o g e n y ? ~}$

$$
\Psi=\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
{[a]} & -\hat{\varphi} \\
\varphi & {[a]}
\end{array}\right) \cdot\left(\begin{array}{cc}
{[a]} & \hat{\varphi} \\
-\varphi & {[a]}
\end{array}\right)=\left(\begin{array}{cc}
{\left[a^{2}\right]+\left[3^{m}\right]} & 0 \\
0 & {\left[a^{2}\right]+\left[3^{m}\right]}
\end{array}\right)=\left(\begin{array}{cc}
{\left[2^{n}\right]} & 0 \\
0 & {\left[2^{n}\right]}
\end{array}\right)
$$

- $\operatorname{ker}(\Psi)=\left\{\left(\left[3^{m}\right] P,[a] \varphi(P)\right) \mid P \in E_{1}\left[2^{n}\right]\right\}$
- Given φ on $E_{1}\left[2^{n}\right]$ (torsion information) \Rightarrow can compute $\operatorname{ker}(\Psi) \Rightarrow$ can compute φ

4D embedding of an isogeny

- 2n-3m not a square? [Robert] has a solution

4D embedding of an isogeny

- $\mathbf{2 n}^{\mathbf{n}} \mathbf{3}^{\mathbf{m}}$ not a square? [Robert] has a solution
- Suppose $2^{n}-3^{m}=a^{2}+b^{2}$ is a sum of 2 squares...

4D embedding of an isogeny

- $\mathbf{2 n}^{\mathbf{n}} \mathbf{3}^{\mathbf{m}}$ not a square? [Robert] has a solution
- Suppose $2^{n}-3^{m}=a^{2}+b^{2}$ is a sum of 2 squares...
- Define $\Psi: E_{1} \times E_{1} \times E_{2} \times E_{2} \rightarrow E_{1} \times E_{1} \times E_{2} \times E_{2}$ as

$$
\left(\begin{array}{cccc}
a & b & -\hat{\varphi} & 0 \\
-b & a & 0 & -\hat{\varphi} \\
\varphi & 0 & a & b \\
0 & \varphi & -b & a
\end{array}\right)
$$

4D embedding of an isogeny

- $\mathbf{2 n}^{\mathbf{n}} \mathbf{3}^{\mathbf{m}}$ not a square? [Robert] has a solution
- Suppose $2^{n}-3^{m}=a^{2}+b^{2}$ is a sum of 2 squares...
- Define $\Psi: E_{1} \times E_{1} \times E_{2} \times E_{2} \rightarrow E_{1} \times E_{1} \times E_{2} \times E_{2}$ as

$$
\left(\begin{array}{cccc}
a & b & -\hat{\varphi} & 0 \\
-b & a & 0 & -\hat{\varphi} \\
\varphi & 0 & a & b \\
0 & \varphi & -b & a
\end{array}\right)
$$

- It is a $2^{n-i s o g e n y}$

4D embedding of an isogeny

- $\mathbf{2 n}^{\mathbf{n}} \mathbf{3 m}^{\mathbf{m}}$ not a square? [Robert] has a solution
- Suppose $2^{n}-3^{m}=a^{2}+b^{2}$ is a sum of 2 squares...
- Define $\Psi: E_{1} \times E_{1} \times E_{2} \times E_{2} \rightarrow E_{1} \times E_{1} \times E_{2} \times E_{2}$ as

$$
\left(\begin{array}{cccc}
a & b & -\hat{\varphi} & 0 \\
-b & a & 0 & -\hat{\varphi} \\
\varphi & 0 & a & b \\
0 & \varphi & -b & a
\end{array}\right)
$$

- It is a $2^{n-i s o g e n y ~}$
- Isogeny in dimension 4

4D embedding of an isogeny

- 2n-3m not a square? [Robert] has a solution
- Suppose $2^{n}-3^{m}=a^{2}+b^{2}$ is a sum of 2 squares...
- Define $\Psi: E_{1} \times E_{1} \times E_{2} \times E_{2} \rightarrow E_{1} \times E_{1} \times E_{2} \times E_{2}$ as

$$
\left(\begin{array}{cccc}
a & b & -\hat{\varphi} & 0 \\
-b & a & 0 & -\hat{\varphi} \\
\varphi & 0 & a & b \\
0 & \varphi & -b & a
\end{array}\right)
$$

- It is a $2^{n-i s o g e n y ~}$
- Isogeny in dimension 4
- Many integers are sum of 2 squares... but not all

8D embedding of an isogeny

- $2^{n}-3^{m}$ not a sum of two square? [Robert] has another solution: Zarhin's trick

8D embedding of an isogeny

- $2^{n}-3^{m}$ not a sum of two square? [Robert] has another solution: Zarhin's trick
- Every integer is a sum of $\mathbf{4}$ squares: $2^{n}-3^{m}=a^{2}+b^{2}+c^{2}+d^{2}$

8D embedding of an isogeny

- $2^{n}-3^{m}$ not a sum of two square? [Robert] has another solution: Zarhin's trick
- Every integer is a sum of 4 squares: $2^{n}-3^{m}=a^{2}+b^{2}+c^{2}+d^{2}$

$$
\left(\begin{array}{cccccccc}
a & -b & -c & -d & -\hat{\varphi} & & & 0 \\
b & a & d & -c & & -\hat{\varphi} & 0 \\
c & -d & a & b & 0 & -\hat{\varphi} & \\
d & c & -b & a & 0 & & -\hat{\varphi} \\
\varphi & & & & a & -b & -c & -d \\
& \varphi & 0 & b & a & d & -c \\
& & \varphi & & c & -d & a & b \\
0 & & \varphi & d & c & -b & a
\end{array}\right)
$$

Applications

- FESTA: Fast Encryption from Supersingular Torsion Attacks

Applications

- FESTA: Fast Encryption from Supersingular Torsion Attacks
\Rightarrow 2D isogenies for decryption

Applications

- FESTA: Fast Encryption from Supersingular Torsion Attacks
\Rightarrow 2D isogenies for decryption
- Well-studied, "Richelot isogenies", efficient

Applications

- FESTA: Fast Encryption from Supersingular Torsion Attacks
- 2D isogenies for decryption
- Well-studied, "Richelot isogenies", efficient
\Rightarrow Good implementations available

Applications

- FESTA: Fast Encryption from Supersingular Torsion Attacks
- 2D isogenies for decryption
- Well-studied, "Richelot isogenies", efficient
\mapsto Good implementations available
- SQIsign HD: signature scheme inspired by SQIsign

Applications

- FESTA: Fast Encryption from Supersingular Torsion Attacks
- 2D isogenies for decryption
- Well-studied, "Richelot isogenies", efficient
\Rightarrow Good implementations available
- SQIsign HD: signature scheme inspired by SQIsign
\Rightarrow 4D isogenies for verification

Applications

- FESTA: Fast Encryption from Supersingular Torsion Attacks
- 2D isogenies for decryption
- Well-studied, "Richelot isogenies", efficient
\mapsto Good implementations available
- SQIsign HD: signature scheme inspired by SQIsign
\Rightarrow 4D isogenies for verification
\Rightarrow Not well studied

Applications

- FESTA: Fast Encryption from Supersingular Torsion Attacks
- 2D isogenies for decryption
- Well-studied, "Richelot isogenies", efficient
\mapsto Good implementations available
- SQIsign HD: signature scheme inspired by SQIsign
\Rightarrow 4D isogenies for verification
\Rightarrow Not well studied
\mapsto Previous literature says it can be done in polynomial time...

Applications

- FESTA: Fast Encryption from Supersingular Torsion Attacks
- 2D isogenies for decryption
- Well-studied, "Richelot isogenies", efficient
\Rightarrow Good implementations available
- SQIsign HD: signature scheme inspired by SQIsign
\Rightarrow 4D isogenies for verification
\Rightarrow Not well studied
\Rightarrow Previous literature says it can be done in polynomial time...
\Rightarrow Back-of-the-envelope suggests it will be practicalтм

