
Post-Quantum Signatures from Multiparty
Computation: Recent Advances

Thibauld Feneuil

PQCrypto 2023

August 17, 2023, College Park (USA)

Table of Contents

• Introduction

• MPC-in-the-Head: general principle

• From MPC-in-the-Head to signatures

• Optimisations and variants

• Related works

• Conclusion

Some figures used in the following slides have
been realised by Matthieu Rivain (CryptoExperts).

Introduction

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Very hard
to compute

Short signatures

“Trapdoor” in the public key

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Very hard
to compute

Short signatures

“Trapdoor” in the public key

From a
zero-knowledge proof

I know the
private key.

I am convinced.

Large(r) signatures

Short public key

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Very hard
to compute

Short signatures

“Trapdoor” in the public key

From a
zero-knowledge proof

I know the
private key.

I am convinced.

Large(r) signatures

Short public key

Proof of knowledge

• Completeness: Pr[verif ✓ | honest prover] = 1

• Soundness: Pr[verif ✓ | malicious prover] (e.g.)

• Zero-knowledge: verifier learns nothing on

≤ ε 2−128

x

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know such that .x F(x) = y

I am convinced / I am
not convinced.

MPC in the Head

• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turn an MPC protocol into a zero knowledge proof of knowledge

• Generic: can be apply to any cryptographic problem

• Convenient to build (candidate) post-quantum signature schemes

• Picnic: submission to NIST (2017)

• First round of recent NIST call: 8 MPCitH schemes / 40 submissions

MPC in the Head

• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turn an MPC protocol into a zero knowledge proof of knowledge

• Generic: can be apply to any cryptographic problem

• Convenient to build (candidate) post-quantum signature schemes

• Picnic: submission to NIST (2017)

• First round of recent NIST call: 8 MPCitH schemes / 40 submissions

Figure: Number of citations
to [IKOS07] by year

Source: Google Scholar

MPC in the Head

• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turn an MPC protocol into a zero knowledge proof of knowledge

• Generic: can be apply to any cryptographic problem

• Convenient to build (candidate) post-quantum signature schemes

• Picnic: submission to NIST (2017)

• First round of recent NIST call: 8 MPCitH schemes / 40 submissions

Figure: Number of citations
to [IKOS07] by year

Source: Google Scholar

Picnic

MPC in the Head

• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turn an MPC protocol into a zero knowledge proof of knowledge

• Generic: can be apply to any cryptographic problem

• Convenient to build (candidate) post-quantum signature schemes

• Picnic: submission to NIST (2017)

• First round of recent NIST call: 8 MPCitH schemes / 40 submissions

AIMer
Biscuit
MIRA
MiRitH

MQOM
PERK
RYDE
SDitH

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

 s.t. [[x]] = ([[x]]1, …, [[x]]N) x = [[x]]1 + … + [[x]]N

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC-in-the-Head transform

MPCitH: general principle

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public
domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPCitH transform

Prover Verifier

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N

② Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

② Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Cheating detected!

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Seems OK.

MPCitH transform
• Zero-knowledge MPC protocol is -private

• Soundness:

• Parallel repetition

Protocol repeated times in parallel → soundness error

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ (1
N)

τ

MPCitH transform
• Zero-knowledge MPC protocol is -private

• Soundness:

• Parallel repetition

Protocol repeated times in parallel → soundness error

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ (1
N)

τ

MPCitH transform
• Zero-knowledge MPC protocol is -private

• Soundness:

• Parallel repetition

Protocol repeated times in parallel → soundness error

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ (1
N)

τ

From MPC-in-the-Head to signatures

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC-in-the Head transform

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Three approaches:

Rely on standard symmetric primitives
• AES: BBQ (2019), Banquet (2021), Limbo-Sign (2021), Helium+AES (2022)

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives
• LowMC: Picnic1 (2017), Picnic2 (2018), Picnic3 (2020)

• Rain: Rainier (2021), BN++Rain (2022)

• AIM: AIMer (2022)

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems (non-exhaustive list)
• Syndrome Decoding: SDitH (2022), RYDE (2023)

• MinRank: MiRitH (2022), MIRA (2023)

• Multivariate Quadratic: MQOM (2023), Biscuit (2023)

• Permuted Kernel: PERK (2023)

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems

Expressed as an arithmetic
circuit, enabling us to use
existing MPCitH-based

proof systems (as BN++)

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems

Expressed as an arithmetic
circuit, enabling us to use
existing MPCitH-based

proof systems (as BN++)

Should be rephrased to achieve
interesting performances

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems

Expressed as an arithmetic
circuit, enabling us to use
existing MPCitH-based

proof systems (as BN++)

Should be rephrased to achieve
interesting performances

Example (RYDE): how to check that a vector has a rank weight
smaller than some public bound ?

x ∈ 𝔽 n
qm

r
By checking that are roots of a degree- -polynomial .x1, …, xn qr q

r

∑
i=0

aiXqi

[Fen22] Feneuil. “Building MPCitH-based Signatures from MQ, MinRank, Rank SD and PKP” (ePrint 2022/1512)

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

Should take [KZ20] attack into account (when there are more than 3 rounds)!
[KZ20] Kales, Zaverucha. “An attack on some signature schemes constructed from five-pass identification schemes” (CANS20)

Fiat-Shamir transform

Optimisations and variants

Optimisations and variants

With SDitH-L1-gf251 as example.

NIST Category I

Field GF(251)

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Naive MPCitH transformation

Size ≈ τ ⋅ (N ⋅ 2λ + N ⋅ |α | + (N − 1) ⋅ |x |)

Size of a
commitment digest

Size of the MPC input (per party)

Size of the broadcast (per party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Naive MPCitH transformation

SDitH-L1-gf251:
the input of the MPC protocol is around 323 bytes,
The broadcast value of the MPC protocol is around 36 bytes.

x
α

Size ≈ τ ⋅ (N ⋅ 2λ + N ⋅ |α | + (N − 1) ⋅ |x |)

Size of a
commitment digest

Size of the MPC input (per party)

Size of the broadcast (per party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Naive MPCitH transformation

SDitH-L1-gf251:
the input of the MPC protocol is around 323 bytes,
The broadcast value of the MPC protocol is around 36 bytes

x
α

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

MPCitH transform

Prover

Verifier

① Generate and commit shares

 Compute
[[x]] = ([[x]]1, …, [[x]]N)

∀i, comi = Comρi([[x]]i)

② Run MPC in their head

h2 = Hash([[α]]1, …, [[α]]N)
③ Choose a random party

i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}

([[x]]i, ρi)i≠i*

⑤ Compute
 - Commitments
 - MPC computation
 Check
 Check
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept
h1 = Hash(com1, …, comN)
h2 = Hash([[α]]1, …, [[α]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*
(comi*, [[α]]i*)

h1 = Hash(𝖼𝗈𝗆1, …, 𝖼𝗈𝗆N)

MPCitH transform

Prover

Verifier

① Generate and commit shares

 Compute
[[x]] = ([[x]]1, …, [[x]]N)

∀i, comi = Comρi([[x]]i)

② Run MPC in their head

h2 = Hash([[α]]1, …, [[α]]N)
③ Choose a random party

i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}

([[x]]i, ρi)i≠i*

⑤ Compute
 - Commitments
 - MPC computation
 Check
 Check
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept
h1 = Hash(com1, …, comN)
h2 = Hash([[α]]1, …, [[α]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*
(comi*, [[α]]i*)

h1 = Hash(𝖼𝗈𝗆1, …, 𝖼𝗈𝗆N)

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

seed1 seed2 seed3 seedN−1 seedN

+ΔxPR
G

PR
G

PR
G

PR
G

PR
G

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤) ← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

to be revealedi*

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

to be revealedi*

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

to be revealedi*

sibling path
→ seedslog(N)

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

Traditional MPCitH transformation

Size ≈ τ ⋅ (|Δx | + |α | + λ ⋅ log2 N + 2λ)

Path in the seed (GGM) treeSize of the auxiliary value

Size of the broadcast (of the hidden party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Commitment
of the hidden party

Traditional MPCitH transformation

SDitH-L1-gf251:
the input of the MPC protocol is around 323 bytes,
The broadcast value of the MPC protocol is around 36 bytes.

x
α

Traditional MPCitH transformation

Running times @3.80Ghz

Signing algorithm Verification algorithm

Traditional MPCitH transformation

Running times @3.80Ghz

Signing algorithm Verification algorithm

Symmetric
MPC Emulation
Misc

Signing algorithm

Traditional MPCitH transformation

9 %

63 %

28 %

Symmetric
MPC Emulation
Misc

for partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (ms)19

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

 sharesN

+Δx

[[x]]1 [[x]]2

[[x]]N

[[x]] N

[[x]] N+1

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

 sharesN

+Δx

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

 sharesN sharesN

+Δx

[[x]](1)
1

[[x]](1)
2

[[x]](1)
N

⋮

+

+

+

 sharesN

[[x]](2)
1 [[x]](2)

2 [[x]](2)
N

+ + +…

x
=

=

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

 sharesN sharesN

+Δx

[[x]](1)
1

[[x]](1)
2

[[x]](1)
N

⋮

+

+

+

 sharesN

[[x]](2)
1 [[x]](2)

2 [[x]](2)
N

+ + +…

Traditional approach:
 - Emulating the -party protocol

with inputs
 - Chance of cheating

N
[[x]]1, …, [[x]]N

1/N

x
=

=

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

 sharesN sharesN

+Δx

[[x]](1)
1

[[x]](1)
2

[[x]](1)
N

⋮

+

+

+

 sharesN

[[x]](2)
1 [[x]](2)

2 [[x]](2)
N

+ + +…

Traditional approach:
 - Emulating the -party protocol

with inputs
 - Chance of cheating

Hypercube technique:
 - Emulating the -party protocol

with inputs

 - Emulating the -party protocol
with inputs

 - Chance of cheating

N
[[x]]1, …, [[x]]N

1/N

N
[[x]](1)

1 , …, [[x]](1)
N

N
[[x]](2)

1 , …, [[x]](2)
N

(1

N)
2

→
1
N

x
=

=

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

 sharesN sharesN

+Δx

[[x]](1)
1

[[x]](1)
2

[[x]](1)
N

⋮

+

+

+

 sharesN

[[x]](2)
1 [[x]](2)

2 [[x]](2)
N

+ + +…

Traditional approach:
 - Emulating the -party protocol

with inputs
 - Chance of cheating

Hypercube technique:
 - Emulating the -party protocol

with inputs

 - Emulating the -party protocol
with inputs

 - Chance of cheating

N
[[x]]1, …, [[x]]N

1/N

N
[[x]](1)

1 , …, [[x]](1)
N

N
[[x]](2)

1 , …, [[x]](2)
N

(1

N)
2

→
1
N

x
=

=

 ev
als

N

 ev
als

2
N

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

 sharesN sharesN

+Δx

[[x]](1)
1

[[x]](1)
2

[[x]](1)
N

⋮

+

+

+

 sharesN

[[x]](2)
1 [[x]](2)

2 [[x]](2)
N

+ + +…

Traditional approach:
 - Emulating the -party protocol

with inputs
 - Chance of cheating

Hypercube technique:
 - Emulating the -party protocol

with inputs

 - Emulating the -party protocol
with inputs

 - Chance of cheating

N
[[x]]1, …, [[x]]N

1/N

N
[[x]](1)

1 , …, [[x]](1)
N

N
[[x]](2)

1 , …, [[x]](2)
N

(1

N)
2

→
1
N

x
=

=

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

 sharesN sharesN

+Δx

[[x]](1)
1

[[x]](1)
2

[[x]](1)
N

⋮

+

+

+

 sharesN

[[x]](2)
1 [[x]](2)

2 [[x]](2)
N

+ + +…

Traditional approach:
 - Emulating the -party protocol

with inputs
 - Chance of cheating

Hypercube technique:
 - Emulating the -party protocol

with inputs

 - Emulating the -party protocol
with inputs

 - Chance of cheating

N
[[x]]1, …, [[x]]N

1/N

N
[[x]](1)

1 , …, [[x]](1)
N

N
[[x]](2)

1 , …, [[x]](2)
N

(1

N)
2

→
1
N

x
=

=

 ev
als

1 + 2(
N − 1)

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

Previous slide: square of side N

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

Previous slide: square of side

The hypercube technique: hypercube of dimension (each side has a size of)

Emulating subprotocols with parties.

N

log2 N 2

log2 N 2

Source: Figure from [AGHHJY23]

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

Previous slide: square of side

The hypercube technique: hypercube of dimension (each side has a size of)

Emulating subprotocols with parties.

Soundness error:

Emulation cost:

 parties

N

log2 N 2

log2 N 2

(1
2)

log2 N

=
1
N

2 ⋅ log2 N

Source: Figure from [AGHHJY23]

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

Previous slide: square of side

The hypercube technique: hypercube of dimension (each side has a size of)

Emulating subprotocols with parties.

Soundness error:

Emulation cost:

 parties

 parties

N

log2 N 2

log2 N 2

(1
2)

log2 N

=
1
N

2 ⋅ log2 N

1 + log2 N

Source: Figure from [AGHHJY23]

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

Traditional: party emulations per repetitionN

Hypercube: party emulations per repetition1 + log2 N

N = 256

1 + log2 N = 9

Signing algorithm Verification algorithm

Running times @3.80Ghz

Before

The Hypercube Technique

Signing algorithm Verification algorithm

Running times @3.80Ghz

The Hypercube Technique

Symmetric
Packing
MPC Emulation
Misc

Signing algorithm

6 %

12 %

13 %

69 %

Symmetric
Packing
MPC Emulation
Misc

for partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (ms)7

The Hypercube Technique

The Threshold Approach

In the threshold approach, we used an low-threshold sharing scheme.
For example, the Shamir’s -secret sharing scheme.

To share a value ,
sample uniformly at random,

build the polynomial ,

Set the share , where is publicly known.

The prover reveal only shares to the verifier (instead of).
In practice, .

(ℓ, N)

x
r1, r2, …, rℓ

P(X) = x +
ℓ

∑
k=0

rk ⋅ Xk

[[x]]i ← P(ei) ei

ℓ N − 1
ℓ ∈ {1,2,3}

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(ePrint 2022/1407)

The Threshold Approach

In the threshold approach, we used an low-threshold sharing scheme.
For example, the Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

Construction:
The verifier just needs to re-emulate parties (per repetition);
The prover just needs to emulate parties (per repetition);
The prover uses a Merkle tree to commit the share;
The obtained signature size is larger;
We have the constraint: .

(ℓ, N)

ℓ N − 1
ℓ ∈ {1,2,3}

ℓ
1 + ℓ

N ≤ |𝔽 |

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(ePrint 2022/1407)

The Threshold Approach

In the threshold approach, we used an low-threshold sharing scheme.
For example, the Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

Construction:
The verifier just needs to re-emulate parties (per repetition);

The prover just needs to emulate parties (per repetition);
The prover uses a Merkle tree to commit the share;
The obtained signature size is larger;
We have the constraint:

(ℓ, N)

ℓ N − 1
ℓ ∈ {1,2,3}

ℓ
1 + ℓ

N ≤ |𝔽 |

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(ePrint 2022/1407)

The Threshold Approach

In the threshold approach, we used an low-threshold sharing scheme.
For example, the Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

Construction:
The verifier just needs to re-emulate parties (per repetition);
The prover just needs to emulate parties (per repetition);

The prover uses a Merkle tree to commit the share;
The obtained signature size is larger;
We have the constraint:

(ℓ, N)

ℓ N − 1
ℓ ∈ {1,2,3}

ℓ
1 + ℓ

N ≤ |𝔽 |

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(ePrint 2022/1407)

The Threshold Approach

In the threshold approach, we used an low-threshold sharing scheme.
For example, the Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

Construction:
The verifier just needs to re-emulate parties (per repetition);
The prover just needs to emulate parties (per repetition);
The prover uses a Merkle tree to commit the share;

The obtained signature size is larger;
We have the constraint:

(ℓ, N)

ℓ N − 1
ℓ ∈ {1,2,3}

ℓ
1 + ℓ

N ≤ |𝔽 |

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(ePrint 2022/1407)

The Threshold Approach

In the threshold approach, we used an low-threshold sharing scheme.
For example, the Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

Construction:
The verifier just needs to re-emulate parties (per repetition);
The prover just needs to emulate parties (per repetition);
The prover uses a Merkle tree to commit the share;
The obtained signature size is larger;

We have the constraint: .

(ℓ, N)

ℓ N − 1
ℓ ∈ {1,2,3}

ℓ
1 + ℓ

N ≤ |𝔽 |

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(ePrint 2022/1407)

The Threshold Approach

In the threshold approach, we used an low-threshold sharing scheme.
For example, the Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

Construction:
The verifier just needs to re-emulate parties (per repetition);
The prover just needs to emulate parties (per repetition);
The prover uses a Merkle tree to commit the shares;
The obtained signature size is larger;
We have the constraint: .

(ℓ, N)

ℓ N − 1
ℓ ∈ {1,2,3}

ℓ
1 + ℓ

N ≤ |𝔽 |

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(ePrint 2022/1407)

Signing algorithm Verification algorithm

Running times @3.80Ghz

Before

The Threshold Approach

Signing algorithm Verification algorithm

Running times @3.80Ghz

The Threshold Approach

Signing algorithm

Running times @3.80Ghz

The Threshold Approach

5 %
6 %

20 %

69 %

Symmetric
Share Computing
MPC Emulation
Misc

for partiesN := 251
Signing time

(ms)1.6

 parties251

Running times @3.80Ghz

The Threshold Approach

4 %

46 % 50 %

Symmetric
MPC Emulation
Misc

for partiesN := 251
Verification time

(ms)0.2

Verification algorithm

 parties251

The existing MPCitH transforms

Traditional

Hypercube Threshold

Shorter signature sizes
Highly parallelizable
Slower signing time

Signing time Verification time
Computational cost is mainly

due to symmetric primitives

≈

Faster signing time
Highly parallelizable
Very fast verification
Larger signature size

Restriction # of parties
Computational cost is mainly

due to arithmetics

MPCitH-based NIST candidates

Short Instance Fast Instance

AIMer Traditional (256-1615) Traditional (16-57)

Biscuit Traditional (256) Traditional (16)

MIRA Hypercube (256) Hypercube (32)

MiRith
Traditional (256) Traditional (16)

Hypercube (256) Hypercube (16)

MQOM Hypercube (256) Hypercube (32)

RYDE Hypercube (256) Hypercube (32)

SDitH Hypercube (256) Threshold (251-256)

Related works

PERK: Shared Permutation on Permuted Kernel Problem

Public
domain

Standard MPC-in-the-Head Path-based MPC-in-the-Head

AIMer, Biscuit, MIRA, MiRitH
MQOM, RYDE, SDitH PERK

FAEST: VOLE-in-the-Head

Will be presented at Crypto’23 the 23rd August

VOLE: vector oblivious linear evaluation

“FAEST is the first AES-based signature
scheme to be smaller than SPHINCS+”

Conclusion

Limitations

Relatively slow (few milliseconds)

Greedy use of symmetric cryptography

Relatively large signatures (4-10 KB for L1)

Quadratic growth in the security level

Advantages and limitations

Limitations

Relatively slow (few milliseconds)

Greedy use of symmetric cryptography

Relatively large signatures (4-10 KB for L1)

Quadratic growth in the security level

Advantages and limitations

Advantages

Conservative hardness assumption:

No structure (often), no trapdoor

Small (public) keys

Good public key + signature size

Adaptive and tunable parameters

MPC-in-the-Head

Very versatile and tunable

 Can be applied on any one-way function

A practical tool to build conservative signature schemes

Conclusion

MPC-in-the-Head

Very versatile and tunable

 Can be applied on any one-way function

A practical tool to build conservative signature schemes

Conclusion

Perspectives

MPCitH transformations: new works in 2022 (hypercube, threshold)

Could lead to follow-up works

Signatures with advanced functionalities:

ring signatures, threshold signatures, multi-signatures,

blind signatures, …

MPC-in-the-Head

Very versatile and tunable

 Can be applied on any one-way function

A practical tool to build conservative signature schemes

Conclusion

Perspectives

MPCitH transformations: new works in 2022 (hypercube, threshold)

Could lead to follow-up works

Signatures with advanced functionalities:

ring signatures, threshold signatures, multi-signatures,

blind signatures, …

Thank you for your attention.

