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Proof of knowledge

• Completeness: Pr[verif ✓ | honest prover] = 1 

• Soundness: Pr[verif ✓ | malicious prover]    (e.g.  ) 

• Zero-knowledge: verifier learns nothing on 

≤ ε 2−128

x

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know  such that .x F(x) = y

I am convinced / I am 
not convinced.
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Example (RYDE): how to check that a vector  has a rank weight 
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x ∈ 𝔽 n
qm

r
By checking that  are roots of a degree-  -polynomial .x1, …, xn qr q

r

∑
i=0

aiXqi

[Fen22] Feneuil. “Building MPCitH-based Signatures from MQ, MinRank, Rank SD and PKP” (ePrint 2022/1512)
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Should take [KZ20] attack into account (when there are more than 3 rounds)!
[KZ20] Kales, Zaverucha. “An attack on some signature schemes constructed from five-pass identification schemes” (CANS20)

Fiat-Shamir transform
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[[x]]3

[[x]]4

[[x]]N

i*
(comi*, [[α]]i*)

h1 = Hash(𝖼𝗈𝗆1, …, 𝖼𝗈𝗆N)
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sibling path 
→  seedslog(N)

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to 
Post-Quantum Signatures” (CCS 2018)
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Traditional MPCitH transformation

Size ≈ τ ⋅ ( |Δx | + |α | + λ ⋅ log2 N + 2λ)

Path in the seed (GGM) treeSize of the auxiliary value

Size of the broadcast (of the hidden party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Commitment 
of the hidden party



Traditional MPCitH transformation

SDitH-L1-gf251:
the input  of the MPC protocol is around 323 bytes,
The broadcast value  of the MPC protocol is around 36 bytes.

x
α
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Signing algorithm

Traditional MPCitH transformation

9 %

63 %

28 %

Symmetric
MPC Emulation
Misc

for  partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (  ms)19



The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH” 
(Eurocrypt 2023)
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+Δx
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The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH” 
(Eurocrypt 2023)

Traditional:  party emulations per repetitionN

Hypercube:  party emulations per repetition1 + log2 N

N = 256

1 + log2 N = 9
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Signing algorithm

6 %

12 %

13 %

69 %

Symmetric
Packing
MPC Emulation
Misc

for  partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (  ms)7
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The Threshold Approach

In the threshold approach, we used an low-threshold sharing scheme. 
For example, the Shamir’s -secret sharing scheme. 

To share a value , 
sample  uniformly at random, 

build the polynomial , 

Set the share , where  is publicly known. 

The prover reveal only  shares to the verifier (instead of ). 
In practice, .

(ℓ, N)

x
r1, r2, …, rℓ

P(X) = x +
ℓ

∑
k=0

rk ⋅ Xk

[[x]]i ← P(ei) ei

ℓ N − 1
ℓ ∈ {1,2,3}

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head” 
(ePrint 2022/1407)
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Signing algorithm

Running times @3.80Ghz

The Threshold Approach

5 %
6 %

20 %

69 %

Symmetric
Share Computing
MPC Emulation
Misc

for  partiesN := 251
Signing time

(  ms)1.6

 parties251



Running times @3.80Ghz

The Threshold Approach

4 %

46 % 50 %

Symmetric
MPC Emulation
Misc

for  partiesN := 251
Verification time

(  ms)0.2

Verification algorithm

 parties251



The existing MPCitH transforms

Traditional

Hypercube Threshold

Shorter signature sizes 
Highly parallelizable 
Slower signing time 

Signing time  Verification time 
Computational cost is mainly 

due to symmetric primitives

≈

Faster signing time 
Highly parallelizable 
Very fast verification 
Larger signature size 

Restriction # of parties 
Computational cost is mainly 

due to arithmetics



MPCitH-based NIST candidates

Short Instance Fast Instance

AIMer Traditional (256-1615) Traditional (16-57)

Biscuit Traditional (256) Traditional (16)

MIRA Hypercube (256) Hypercube (32)

MiRith
Traditional (256) Traditional (16)

Hypercube (256) Hypercube (16)

MQOM Hypercube (256) Hypercube (32)

RYDE Hypercube (256) Hypercube (32)

SDitH Hypercube (256) Threshold (251-256)



Related works



PERK: Shared Permutation on Permuted Kernel Problem

Public 
domain

Standard MPC-in-the-Head Path-based MPC-in-the-Head

AIMer, Biscuit, MIRA, MiRitH 
MQOM, RYDE, SDitH PERK



FAEST: VOLE-in-the-Head

Will be presented at Crypto’23 the 23rd August 

VOLE: vector oblivious linear evaluation

“FAEST is the first AES-based signature 
scheme to be smaller than SPHINCS+”
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Quadratic growth in the security level

Advantages and limitations

Advantages

Conservative hardness assumption:

No structure (often), no trapdoor

Small (public) keys

Good public key + signature size

Adaptive and tunable parameters
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Very versatile and tunable

 Can be applied on any one-way function

A practical tool to build conservative signature schemes

Conclusion

Perspectives

MPCitH transformations: new works in 2022 (hypercube, threshold)

Could lead to follow-up works

Signatures with advanced functionalities: 

ring signatures, threshold signatures, multi-signatures,

blind signatures, …

Thank you for your attention.


