
1

PQC at Google
PQ Crypto 2023
August 17, 2023

22

Sophie Schmieg
Senior Staff Cryptography Engineer

● PhD in Algebraic Geometry

● Leading Google's ISE Crypto team

Introduction

33

Agenda

1. The Post-Quantum Threat Model

2. Case Study: PQ ALTS

3. Primitives and Standards

4

and how it applies to Google

The Post-Quantum
Threat Model

55

Why is this important now?

Store-Now-Decrypt-Later Attack Attacks Against
RSA/ECC

Planning Transition Transition to PQC in Production

Post-Quantum Cryptography Standardization

Adversaries exfiltrate
encrypted data

Large quantum
computers are built

2023-2024: NIST
publishes the first PQC

standards

2025 or later: Higher layer
protocol standards
incorporate PQC

Time

66

Asymmetric Encryption

Used mainly for encryption in transit,
allows sending confidential messages to
another party, by negotiating a shared
key.

Symmetric Cryptography

Used very widely, especially for
encryption at rest and for actually
transferring data for encryption in
transit, allows to encrypt data with a key.

Digital Signatures

Used very widely, allows for proof of that
the private key owner has endorsed a
specific input.

Fancy Cryptography

Various other uses of cryptography,
often to accomplish complicated privacy
guarantees.

The Post-Quantum Threat Model

77

Asymmetric Encryption

Used mainly for encryption in transit,
allows sending confidential messages to
another party, by negotiating a shared
key.

Symmetric Cryptography

Used very widely, especially for
encryption at rest and for actually
transferring data for encryption in
transit, allows to encrypt data with a key.

Digital Signatures

Used very widely, allows for proof of that
the private key owner has endorsed a
specific input.

Fancy Cryptography

Various other uses of cryptography,
often to accomplish complicated privacy
guarantees.

The Post-Quantum Threat Model

88

Asymmetric Encryption

Used mainly for encryption in transit,
allows sending confidential messages to
another party, by negotiating a shared
key.

Symmetric Cryptography

Used very widely, especially for
encryption at rest and for actually
transferring data for encryption in
transit, allows to encrypt data with a key.

Digital Signatures

Used very widely, allows for proof of that
the private key owner has endorsed a
specific input.

Fancy Cryptography

Various other uses of cryptography,
often to accomplish complicated privacy
guarantees.

The Post-Quantum Threat Model

99

Asymmetric Encryption

Used mainly for encryption in transit,
allows sending confidential messages to
another party, by negotiating a shared
key.

Symmetric Cryptography

Used very widely, especially for
encryption at rest and for actually
transferring data for encryption in
transit, allows to encrypt data with a key.

Digital Signatures

Used very widely, allows for proof of that
the private key owner has endorsed a
specific input.

Fancy Cryptography

Various other uses of cryptography,
often to accomplish complicated privacy
guarantees.

The Post-Quantum Threat Model

��
�� �� ��

1010

Asymmetric Encryption

Used mainly for encryption in transit,
allows sending confidential messages to
another party, by negotiating a shared
key.

Symmetric Cryptography

Used very widely, especially for
encryption at rest and for actually
transferring data for encryption in
transit, allows to encrypt data with a key.

Digital Signatures

Used very widely, allows for proof of that
the private key owner has endorsed a
specific input.

Fancy Cryptography

Various other uses of cryptography,
often to accomplish complicated privacy
guarantees.

The Post-Quantum Threat Model

��
�� �� ��

11

PQ ALTS

1212

Client Server

ALTS: Overview

Documentation: https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

1313

Client Server

ClientInit

ClientInit

● static ECDH key
● cert for ECDH key

ALTS: Overview

Documentation: https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

1414

Client Server

ClientInit

ServerInit

ClientInit

● static ECDH key
● cert for ECDH key

ServerInit

● static ECDH key
● cert for ECDH key

ALTS: Overview

Documentation: https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

1515

Client Server

ClientInit

ServerInit

ServerFinished

ClientInit

● static ECDH key
● cert for ECDH key

ServerInit

● static ECDH key
● cert for ECDH key

ServerFinished

● HMAC(shared_secret, server_const)

ALTS: Overview

Documentation: https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

1616

Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit

● static ECDH key
● cert for ECDH key

ServerInit

● static ECDH key
● cert for ECDH key

ServerFinished

● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS: Overview

Documentation: https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

1717

Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit

● static ECDH key
● cert for ECDH key
● resumption ticket

ServerInit

● resumption confirmation

ServerFinished

● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS: Overview

1818

PQC Overview
Protocol Overhead (estimate)
X25519 Keyshare
Certificate

1919

PQC Overview
Protocol Overhead (estimate)
X25519 Keyshare
Certificate
HRSS public key/ciphertext

2020

Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit

● static ECDH key
● cert for ECDH key
● ephemeral PQC public key

ServerInit

● static ECDH key
● cert for ECDH key
● PQC KEM ciphertext

ServerFinished

● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS PQC

2121

Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit

● static ECDH key
● cert for ECDH key
● somewhat ephemeral PQC public key

ServerInit

● static ECDH key
● cert for ECDH key
● PQC KEM ciphertext

ServerFinished

● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS PQC

2222

Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit

● static ECDH key
● cert for ECDH key
● resumption ticket
● somewhat ephemeral PQC

public key

ServerInit

● resumption confirmation
● PQC KEM ciphertext

ServerFinished

● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS PQC

2323

Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit

● static ECDH key
● cert for ECDH key
● resumption ticket
● somewhat ephemeral PQC

public key

ServerInit

● resumption confirmation

ServerFinished

● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS PQC

24

Primitives and
Standards

2525

26

A Cryptographic Key is the full description
of a mathematical function, with no
information other than the inputs
demanded by the primitive required to
evaluate it.

Guiding Principle

2727

Tink Keys

2828

ECDSA P256/SHA256
x: 04f3…
y: 85cd…
s: 09fa…

Tink Keys

2929

a25f

843b

da3c

34ae

ECDSA

ECDSA

RSA-PKCS1

P256/SHA256

P521/SHA512

2048 bit, SHA256

x: e78a…
y: 13fa…
s: 98ee…

x: 7c53…
y: 9e9f…
s: 8afc…

n: 98f7…
e: 10001
d: affe…

Keyset, Type: PublicKeySign

Primary
ECDSA P256/SHA256

x: 04f3…
y: 85cd…
s: 09fa…

Tink Keys

3030

01a25f9da0eb…

a25f

843b

da3c

34ae

ECDSA

ECDSA

RSA-PKCS1

P256/SHA256

P521/SHA512

2048 bit, SHA256

x: e78a…
y: 13fa…
s: 98ee…

x: 7c53…
y: 9e9f…
s: 8afc…

n: 98f7…
e: 10001
d: affe…

Keyset, Type: PublicKeySign

Primary
ECDSA P256/SHA256

x: 04f3…
y: 85cd…
s: 09fa…

Sample Signature:

Tink Keys

3131

a25f

01a25f9da0eb…

843b

da3c

34ae

ECDSA

ECDSA

RSA-PKCS1

P256/SHA256

P521/SHA512

2048 bit, SHA256

x: e78a…
y: 13fa…
s: 98ee…

x: 7c53…
y: 9e9f…
s: 8afc…

n: 98f7…
e: 10001
d: affe…

Keyset, Type: PublicKeySign

Primary
ECDSA P256/SHA256

x: 04f3…
y: 85cd…
s: 09fa…

Sample Signature:

Tink Keys

3232

01a25f9da0eb…

a25f

843b

da3c

34ae

ECDSA

ECDSA

RSA-PKCS1

P256/SHA256

P521/SHA512

2048 bit, SHA256

x: e78a…
y: 13fa…
s: 98ee…

x: 7c53…
y: 9e9f…
s: 8afc…

n: 98f7…
e: 10001
d: affe…

Keyset, Type: PublicKeySign

Primary
ECDSA P256/SHA256

x: 04f3…
y: 85cd…
s: 09fa…

Sample Signature:

Tink Keys

3333

01a25f9da0eb…

a25f

843b

da3c

34ae

ECDSA

ECDSA

RSA-PKCS1

P256/SHA256

P521/SHA512

2048 bit, SHA256

x: e78a…
y: 13fa…
s: 98ee…

x: 7c53…
y: 9e9f…
s: 8afc…

n: 98f7…
e: 10001
d: affe…

Keyset, Type: PublicKeySign

Primary
ECDSA P256/SHA256

x: 04f3…
y: 85cd…
s: 09fa…

Sample Signature:

Tink Keys

3434

da3c RSA-PKCS1 2048 bit, SHA256
n: 98f7…
e: 10001
d: affe…

a25f

843b

34ae

ECDSA

ECDSA

P256/SHA256

P521/SHA512

x: e78a…
y: 13fa…
s: 98ee…

x: 7c53…
y: 9e9f…
s: 8afc…

ECDSA P256/SHA256
x: 04f3…
y: 85cd…
s: 09fa…

Keyset, Type: PublicKeySign

Primary

Tink Keys

3535

Keyset, Type: PublicKeySign

Primary
a25f

843b

34ae

ECDSA

ECDSA

P256/SHA256

P521/SHA512

x: e78a…
y: 13fa…
s: 98ee…

x: 7c53…
y: 9e9f…
s: 8afc…

ECDSA P256/SHA256
x: 04f3…
y: 85cd…
s: 09fa…

Tink Keys

3636

a25f

843b

34ae

ECDSA

ECDSA

P256/SHA256

P521/SHA512

x: e78a…
y: 13fa…
s: 98ee…

x: 7c53…
y: 9e9f…
s: 8afc…

ECDSA P256/SHA256
x: 04f3…
y: 85cd…
s: 09fa…

Keyset, Type: PublicKeySign

Primary

Tink Keys

3737

a25f

843b

34ae

ECDSA

ECDSA

P256/SHA256

P521/SHA512

x: e78a…
y: 13fa…
s: 98ee…

x: 7c53…
y: 9e9f…
s: 8afc…

ECDSA P256/SHA256
x: 04f3…
y: 85cd…
s: 09fa…

Keyset, Type: PublicKeySign

Primary

Tink Keys

fe71
ECDSA +
Dilithium

P256/SHA256
Dilithum3

x: 04f3…
y: 85cd…
s: 09fa…
ρ: 0a2b…
s1: 1e4f…
…

3838

Dilithium3 consists of three functions:

Example: Dilithium3

3939

Dilithium3 consists of three functions:

Example: Dilithium3

4040

Test vectors that test everything

{
 "tcId" : 506,
 "comment" : "special case for x_2 in multiplication by 9",
 "public" : "302a300506032b656e032100dcffc4c1e1fba5fda9d5c98421d99c257afa90921bc212a046d90f6683e8a467",
 "private" :
"302e020100300506032b656e04220420707ee81f113a244c9d87608b12158c50f9ac1f2c8948d170ad16ab0ad866d74b",
 "shared" : "7ecdd54c5e15f7b4061be2c30b5a4884a0256581f87df60d579a3345653eb641",
 "result" : "acceptable",
 "flags" : [
 "Twist"
]
 },

4141

Hybrid Signatures and Separability

4242

Less options, please
For us, the PQC standards are

● Kyber768
● Dilithium3
● Sphincs+-SHA256s

(list not final; the standards aren't even out yet)

4343

And maybe, 12 rounds of Keccak is
enough

4444

Rolling out new crypto at scale
takes time

We needed several refinements over
multiple years to be able to roll out PQC
even in a highly controlled environment.

Standards should be well-defined

Standards need to be defined to prescribe
the handling of all inputs, including edge
cases.

Gaps in fancy cryptography

While we have a decent selection for
asymmetric encryption and digital
signatures, we have nowhere near the same
flexibility with these new schemes to
construct more advanced cryptography
(RLWE notwithstanding)

Key Takeaways

45

Senior Staff Cryptography Engineer
Sophie Schmieg

sschmieg@google.com

Thank you

46

I guess I can always reuse the slides for the rump session

If you see this slide, I have run out of
material. All that follows will be an
explanation of p-adic lattices, to distract
you from that.

"Bonus" Slides

47

48

M is a lattice if |.| is injective and -log |M| is a lattice in R^t

49

M is a lattice if |.| is injective and -log |M| is a lattice in R^t

I still don't know how or why someone would construct a cryptosystem out of this. It is useful to
describe rigid analytic Jacobians, though.

