

PQC at Google

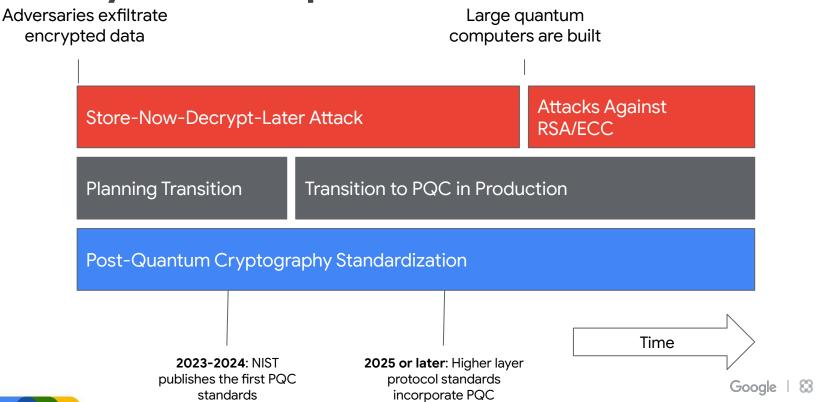
PQ Crypto 2023 August 17, 2023

Introduction

Sophie Schmieg

Senior Staff Cryptography Engineer

- PhD in Algebraic Geometry
- Leading Google's ISE Crypto team


Agenda

- 1. The Post-Quantum Threat Model
- 2. Case Study: PQ ALTS
- 3. Primitives and Standards

and how it applies to Google

Why is this important now?

5

Asymmetric Encryption

Used mainly for encryption in transit, allows sending confidential messages to another party, by negotiating a shared key.

Digital Signatures

Used very widely, allows for proof of that the private key owner has endorsed a specific input.

Symmetric Cryptography

Used very widely, especially for encryption at rest and for actually transferring data for encryption in transit, allows to encrypt data with a key.

Fancy Cryptography

Various other uses of cryptography, often to accomplish complicated privacy guarantees.

Asymmetric Encryption

Used mainly for encryption in transit, allows sending confidential messages to another party, by negotiating a shared key.

Digital Signatures

Used very widely, allows for proof of that the private key owner has endorsed a specific input.

Symmetric Cryptography

Used very widely, especially for encryption at rest and for actually transferring data for encryption in transit, allows to encrypt data with a key.

Fancy Cryptography

Various other uses of cryptography, often to accomplish complicated privacy guarantees.

Asymmetric Encryption

Used mainly for encryption in transit, allows sending confidential messages to another party, by negotiating a shared key.

Digital Signatures

Used very widely, allows for proof of that he private key owner has endorsed a specific input.

Symmetric Cryptography

Used very widely, especially for encryption at rest and for actually transferring data for encryption in transit, allows to encrypt data with a key.

Fancy Cryptography

Various other uses of cryptography, often to accomplish complicated privacy guarantees.

Asymmetric Encryption

Used mainly for encryption in transit, allows sending confidential messages to another party, by negotiating a shared key.

Digital Signatures

Used very widely, allows for proof of that he private key owner has endorsed a specific input.

Head very widely, especially for
tion at rest and for actually
rring data for encryption in
t, allows to encrypt data with a key.

Fancy Cryptography

Various other uses of cryptography, often to accomplish complicated privacy guarantees.

 \frown

Asymmetric Encryption

Used mainly for encryption in transit, allows sending confidential messages to another party, by negotiating a shared key.

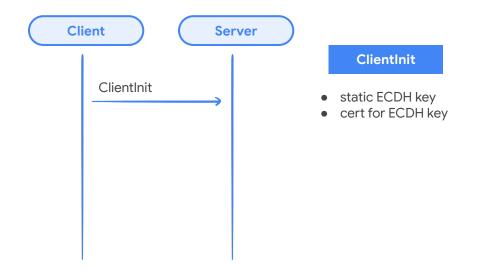
Digital Signatures

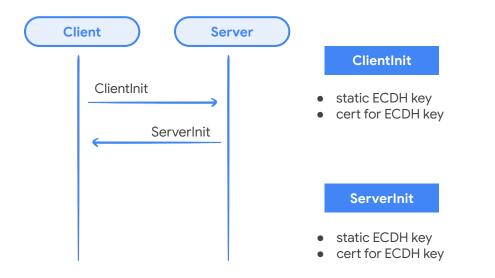
Used very widely, allows for proof of that he private key owner has endorsed a specific input.

Symmetric Cryptography

the very widely, especially for tion at rest and for actually rring data for encryption in t, allows to encrypt data with a key.

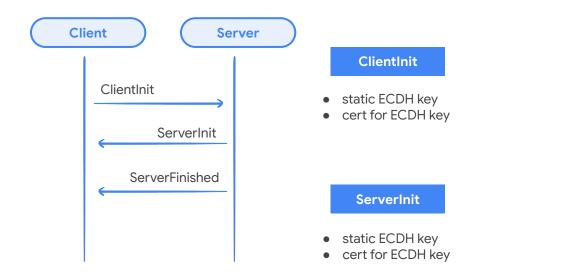
Fancy Cryptography


Various other uses of cryptography, often to accomplish complicated privacy guarantees.



PQ ALTS

СІ	Client		Sei	rver	$\mathbf{)}$

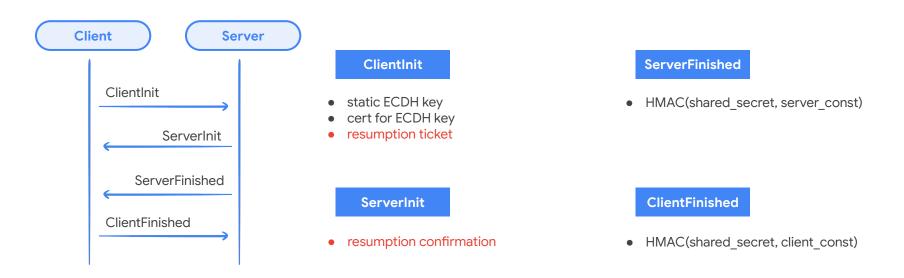


Google | 🕄 🛛 14



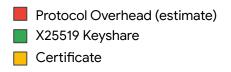
ServerFinished

HMAC(shared_secret, server_const)

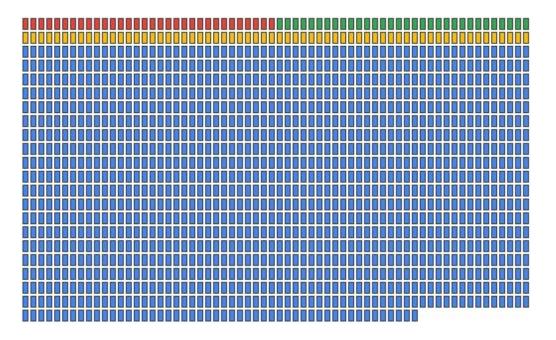


16

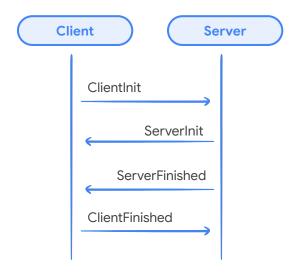
1 23


Google

PQC Overview



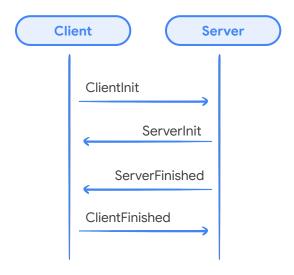



PQC Overview

ClientInit

- static ECDH key
- cert for ECDH key
- ephemeral PQC public key

ServerInit


- static ECDH key
- cert for ECDH key
- PQC KEM ciphertext

ServerFinished

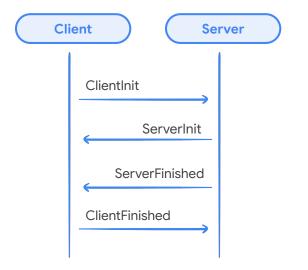
• HMAC(shared_secret, server_const)

ClientFinished

ClientInit

- static ECDH key
- cert for ECDH key
- somewhat ephemeral PQC public key

ServerInit


- static ECDH key
- cert for ECDH key
- PQC KEM ciphertext

ServerFinished

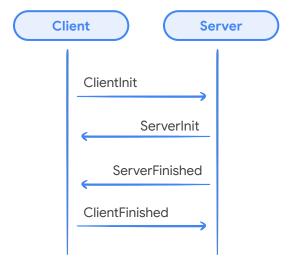
• HMAC(shared_secret, server_const)

ClientFinished

ClientInit

- static ECDH key
- cert for ECDH key
- resumption ticket
- somewhat ephemeral PQC public key

ServerInit


- resumption confirmation
- PQC KEM ciphertext

ServerFinished

• HMAC(shared_secret, server_const)

ClientFinished

ClientInit

- static ECDH key
- cert for ECDH key
- resumption ticket
- somewhat ephemeral PQC public key

ServerInit

• resumption confirmation

ServerFinished

• HMAC(shared_secret, server_const)

ClientFinished

Primitives and Standards

Ukraine needs our help and support. If you can, please donate.

It has been <u>230 days</u> since the last alg=none JWT vulnerability.

The jsonwebtoken library would accept alg: none tokens as valid before version 9.0.0.

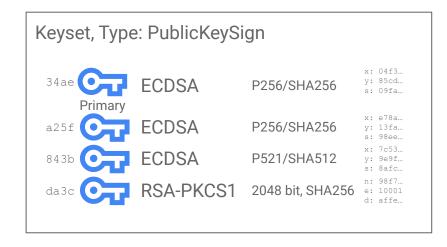
made by zofrex

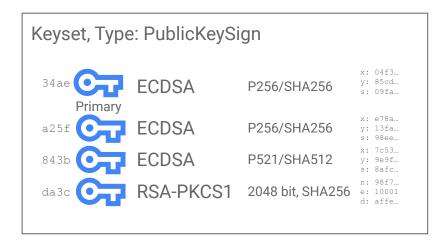
out of date? @ me on Twitter

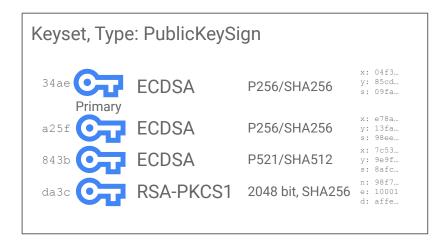
Guiding Principle

A Cryptographic Key is the full description of a mathematical function, with no information other than the inputs demanded by the primitive required to evaluate it.

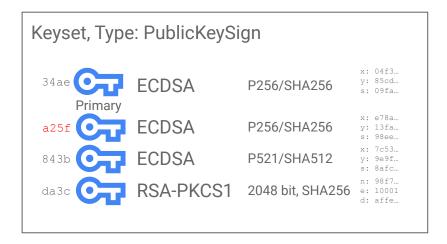
P256/SHA256



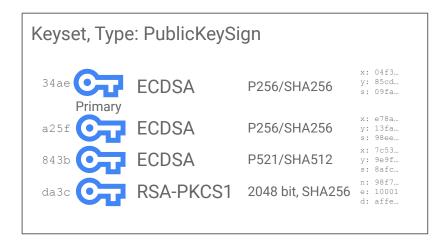




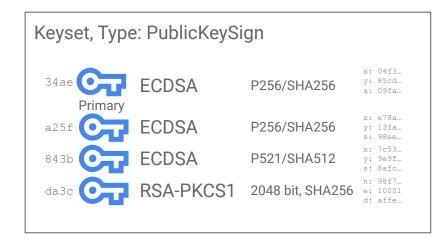
Sample Signature:



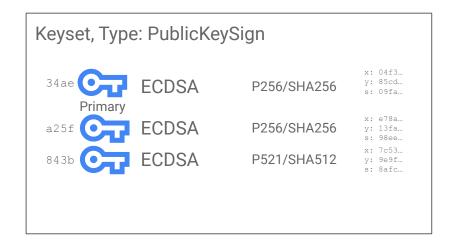
Sample Signature:

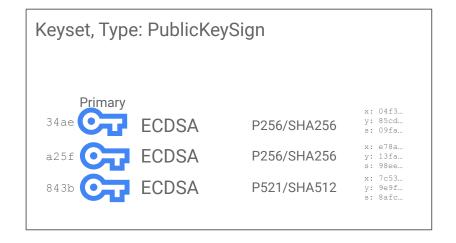


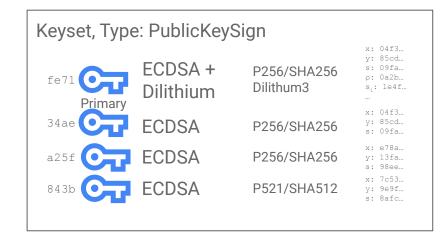
Sample Signature:



Sample Signature:







Tink Keys

Example: Dilithium3

Dilithium3 consists of three functions:

 $G: 0 \xrightarrow{R} \mathcal{P} \times \mathcal{K}$ $S: \mathcal{K} \times \mathcal{M} \xrightarrow{R} \mathcal{S}$ $V: \mathcal{P} \times \mathcal{M} \times \mathcal{S} \to \{\top, \bot\}$

Example: Dilithium3

Dilithium3 consists of three functions:

$$G: 0 \xrightarrow{R} (\{0, 1\}^{15616} \times \{0, 1\}^{88448}) \dot{\cup} \{\bot\}$$

$$S: \{0, 1\}^{884488} \times \{0, 1\}^* \xrightarrow{R} \{0, 1\}^{26344} \dot{\cup} \{\bot\}$$

$$V: \{0, 1\}^{15616} \times \{0, 1\}^* \times \{0, 1\}^{26344} \to \{\top, \bot\}$$

Test vectors that test everything

"tcld" : 506,

"comment" : "special case for x_2 in multiplication by 9",

"public" : "302a300506032b656e032100dcffc4c1e1fba5fda9d5c98421d99c257afa90921bc212a046d90f6683e8a467", "private" :

"302e020100300506032b656e04220420707ee81f113a244c9d87608b12158c50f9ac1f2c8948d170ad16ab0ad866d74b",

"shared": "7ecdd54c5e15f7b4061be2c30b5a4884a0256581f87df60d579a3345653eb641",

```
"result" : "acceptable",
```

```
"flags" : [
"Twist"
```

```
. I WIST
```

```
}.
```

```
Google 8 40
```


Hybrid Signatures and Separability

 $G = (G_{1,P}, G_{2,P}, G_{1,K}, G_{2,K})$ $S = (S_1, S_2)$ $V = V_1 \wedge V_2$

Less options, please

For us, the PQC standards are

- Kyber768
- Dilithium3
- Sphincs+-SHA256s

(list not final; the standards aren't even out yet)

And maybe, 12 rounds of Keccak is enough

Key Takeaways

Rolling out new crypto at scale takes time

We needed several refinements over multiple years to be able to roll out PQC even in a highly controlled environment.

Standards should be well-defined

Standards need to be defined to prescribe the handling of all inputs, including edge cases.

Gaps in fancy cryptography

While we have a decent selection for asymmetric encryption and digital signatures, we have nowhere near the same flexibility with these new schemes to construct more advanced cryptography (RLWE notwithstanding)

Thank you

Sophie Schmieg Senior Staff Cryptography Engineer

sschmieg@google.com

"Bonus" Slides

If you see this slide, I have run out of material. All that follows will be an explanation of p-adic lattices, to distract you from that.

I guess I can always reuse the slides for the rump session

$\begin{array}{ccc} 0 \to \bar{\mathbb{G}}_m^t \to \bar{E} \to B \to 0 \\ & & \downarrow & & \blacksquare \\ 0 \to \mathbb{G}_m^t \to E \to B \to 0 \end{array}$

$\begin{array}{ccc} 0 \to \bar{\mathbb{G}}_m^t \to \bar{E} \to B \to 0 \\ & & \downarrow & & \blacksquare \\ 0 \to \mathbb{G}_m^t \to E \to B \to 0 \end{array}$

M is a lattice if |.| is injective and -log |M| is a lattice in R^t

$\begin{array}{ccc} 0 \to \bar{\mathbb{G}}_m^t \to \bar{E} \to B \to 0 \\ & & \downarrow & & \blacksquare \\ 0 \to \mathbb{G}_m^t \to E \to B \to 0 \end{array}$

M is a lattice if |.| is injective and -log |M| is a lattice in R^t

I still don't know how or why someone would construct a cryptosystem out of this. It is useful to describe rigid analytic Jacobians, though.