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Agenda

1. The Post-Quantum Threat Model

2. Case Study: PQ ALTS 

3. Primitives and Standards
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and how it applies to Google

The Post-Quantum 
Threat Model



55

Why is this important now?

Store-Now-Decrypt-Later Attack Attacks Against 
RSA/ECC

Planning Transition Transition to PQC in Production

Post-Quantum Cryptography Standardization

Adversaries exfiltrate 
encrypted data

Large quantum 
computers are built

2023-2024: NIST 
publishes the first PQC 

standards

2025 or later: Higher layer 
protocol standards 
incorporate PQC

Time
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Asymmetric Encryption

Used mainly for encryption in transit, 
allows sending confidential messages to 
another party, by negotiating a shared 
key.

Symmetric Cryptography

Used very widely, especially for 
encryption at rest and for actually 
transferring data for encryption in 
transit, allows to encrypt data with a key.

Digital Signatures

Used very widely, allows for proof of that 
the private key owner has endorsed a 
specific input.

Fancy Cryptography

Various other uses of cryptography, 
often to accomplish complicated privacy 
guarantees.

The Post-Quantum Threat Model
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PQ ALTS
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Client Server

ALTS: Overview

Documentation: https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security
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Client Server

ClientInit

ClientInit

● static ECDH key
● cert for ECDH key

ALTS: Overview

Documentation: https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security

https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security
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Client Server
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Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished
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PQC Overview
Protocol Overhead (estimate)
X25519 Keyshare
Certificate
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PQC Overview
Protocol Overhead (estimate)
X25519 Keyshare
Certificate
HRSS public key/ciphertext
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Client Server

ClientInit

ServerInit

ServerFinished

ClientFinished

ClientInit

● static ECDH key
● cert for ECDH key
● ephemeral PQC public key

ServerInit

● static ECDH key
● cert for ECDH key
● PQC KEM ciphertext

ServerFinished

● HMAC(shared_secret, server_const)

ClientFinished

● HMAC(shared_secret, client_const)

ALTS PQC
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Client Server
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Primitives and 
Standards
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A Cryptographic Key is the full description 
of a mathematical function, with no 
information other than the inputs 
demanded by the primitive required to 
evaluate it.

Guiding Principle
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Tink Keys
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ECDSA P256/SHA256
x: 04f3…
y: 85cd… 
s: 09fa… 

Tink Keys
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ECDSA
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s: 98ee… 

x: 7c53…
y: 9e9f… 
s: 8afc… 

n: 98f7…
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ECDSA +
Dilithium
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Dilithium3 consists of three functions:

Example: Dilithium3
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Dilithium3 consists of three functions:

Example: Dilithium3
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Test vectors that test everything

{
          "tcId" : 506,
          "comment" : "special case for x_2 in multiplication by 9",
          "public" : "302a300506032b656e032100dcffc4c1e1fba5fda9d5c98421d99c257afa90921bc212a046d90f6683e8a467",
          "private" : 
"302e020100300506032b656e04220420707ee81f113a244c9d87608b12158c50f9ac1f2c8948d170ad16ab0ad866d74b",
          "shared" : "7ecdd54c5e15f7b4061be2c30b5a4884a0256581f87df60d579a3345653eb641",
          "result" : "acceptable",
          "flags" : [
            "Twist"
          ]
        },
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Hybrid Signatures and Separability
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Less options, please
For us, the PQC standards are

● Kyber768
● Dilithium3
● Sphincs+-SHA256s

(list not final; the standards aren't even out yet)
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And maybe, 12 rounds of Keccak is 
enough
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Rolling out new crypto at scale 
takes time

We needed several refinements over 
multiple years to be able to roll out PQC 
even in a highly controlled environment.

Standards should be well-defined

Standards need to be defined to prescribe 
the handling of all inputs, including edge 
cases.

Gaps in fancy cryptography

While we have a decent selection for 
asymmetric encryption and digital 
signatures, we have nowhere near the same 
flexibility with these new schemes to 
construct more advanced cryptography 
(RLWE notwithstanding)

Key Takeaways
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Senior Staff Cryptography Engineer
Sophie Schmieg

sschmieg@google.com

Thank you
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I guess I can always reuse the slides for the rump session

If you see this slide, I have run out of 
material. All that follows will be an 
explanation of p-adic lattices, to distract 
you from that.

"Bonus" Slides
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M is a lattice if |.| is injective and -log |M| is a lattice in R^t
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M is a lattice if |.| is injective and -log |M| is a lattice in R^t

I still don't know how or why someone would construct a cryptosystem out of this. It is useful to 
describe rigid analytic Jacobians, though.


